期刊论文详细信息
BMC Infectious Diseases
Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus
Mawlouth Diallo2  Amadou Alpha Sall4  Scott C. Weaver3  Ousmane Faye1  Ibrahima Dia2  Alioune Gaye2  Ousmane Faye4  Yamar Ba2  Oumar Faye4  Diawo Diallo2  Cheikh Tidiane Diagne1 
[1] Département de Biologie Animale, Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop, Dakar, Senegal;Unité d’Entomologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220,, Senegal;Department of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston 77555–0610, TX, USA;Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220,, Senegal
关键词: Zika virus;    West Africa;    Vector competence;    Senegal;    Oral infection;    Arboviruses;    Aedes;   
Others  :  1231030
DOI  :  10.1186/s12879-015-1231-2
 received in 2015-04-24, accepted in 2015-10-19,  发布年份 2015
【 摘 要 】

Background

Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is an emerging virus of medical importance maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Serological evidence and virus isolations have demonstrated widespread distribution of the virus in Senegal. Several mosquito species have been found naturally infected by ZIKV but little is known about their vector competence.

Methods

We assessed the vector competence of Ae. aegypti from Kedougou and Dakar, Ae. unilineatus, Ae. vittatus and Ae. luteocephalus from Kedougou in Senegal for 6 ZIKV strains using experimental oral infection. Fully engorged female mosquitoes were maintained in an environmental chamber set at 27 ± 1 °C and 80 ± 5 % Relative humidity. At day 5, 10 and 15 days post infection (dpi), individual mosquito saliva, legs/wings and bodies were tested for the presence of ZIKV genome using real time RT-PCR to estimate the infection, dissemination, and transmission rates.

Results

All the species tested were infected by all viral strains but only Ae. vittatus and Ae. luteocephalus were potentially capable of transmitting ZIKV after 15 dpi with 20 and 50 % of mosquitoes, respectively, delivering epidemic (HD 78788) and prototype (MR 766) ZIKV strains in saliva.

Conclusion

All the species tested here were susceptible to oral infection of ZIKV but only a low proportion of Ae. vittatus and Ae. luteocephalus had the viral genome in their saliva and thus the potential to transmit the virus. Further investigations are needed on the vector competence of other species associated with ZIKV for better understanding of the ecology and epidemiology of this virus in Senegal.

【 授权许可】

   
2015 Diagne et al.

附件列表
Files Size Format View
Fig. 1. 38KB Image download
Fig. 1. 38KB Image download
【 图 表 】

Fig. 1.

Fig. 1.

【 参考文献 】
  • [1]Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952; 46(5):509-520.
  • [2]Wolfe ND, Kilbourn AM, Karesh WB, Rahman HA, Bosi EJ, Cropp BC et al.. Sylvatic transmission of arboviruses among Bornean orangutans. Am J Trop Med Hyg. 2001; 64(5–6):310-316.
  • [3]Simpson DI. Zika Virus Infection in Man. Trans R Soc Trop Med Hyg. 1964; 58:335-338.
  • [4]Karabatsos N. International catalogue of arboviruses. 3rd ed. American Society of Tropical Medicine and Hygiene, San Antonio; 1985.
  • [5]Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS et al.. Zika virus outbreak on Yap Island, federated states of Micronesia. N Engl J Med. 2009; 360(24):2536-2543.
  • [6]Hayes EB. Zika virus outside Africa. Emerg Infect Dis. 2009; 15(9):1347-1350.
  • [7]Olson JG, Ksiazek TG, Suhandiman, Triwibowo. Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg. 1981; 75(3):389-393.
  • [8]Darwish MA, Hoogstraal H, Roberts TJ, Ghazi R, Amer T. A sero-epidemiological survey for Bunyaviridae and certain other arboviruses in Pakistan. Trans R Soc Trop Med Hyg. 1983; 77(4):446-450.
  • [9]Monlun E, Zeller H, Le Guenno B, Traoré-Lamizana M, Hervy JP, Adam F et al.. Surveillance of the circulation of arbovirus of medical interest in the region of eastern Senegal. Bull Soc Pathol Exot. 1993; 86(1):21-28.
  • [10]Cao-Lormeau V-M, Musso D. Emerging arboviruses in the Pacific. Lancet. 2014; 384(9954):1571-1572.
  • [11]Musso D, Nilles EJ, Cao Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014; 20(10):O595-O596.
  • [12]Fagbami AH. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg (Lond). 1979; 83(2):213-219.
  • [13]Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg. 1969; 18(3):411-415.
  • [14]Boorman JP, Porterfield JS. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans R Soc Trop Med Hyg. 1956; 50(3):238-242.
  • [15]Cornet M, Robin Y, Adam C, Valade M, Calvo MA. Transmission expérimentale comparée du virus amaril et du virus Zika chez Aedes aegypti. Cah ORSTOM ser Ent med et Parasitol. 1979; 17:47-53.
  • [16]Berge TE. International Catalog of Arboviruses. 2nd ed. National Institute of Allergy and Infectious Diseases and the Center for Disease Control, Washington, D.C; 1975.
  • [17]McCrae AW, Kirya BG. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans R Soc Trop Med Hyg. 1982; 76(4):552-562.
  • [18]Akoua-Koffi C, Diarrassouba S, Benie VB, Ngbichi JM, Bozoua T, Bosson A et al.. Investigation surrounding a fatal case of yellow fever in Cote d’Ivoire in 1999. Bull Soc Pathol Exot. 2001; 94(3):227-230.
  • [19]Diallo D, Sall AA, Buenemann M, Chen R, Faye O, Diagne CT et al.. Landscape ecology of sylvatic chikungunya virus and mosquito vectors in southeastern Senegal. PLoS Negl Trop Dis. 2012; 6(6):e1649.
  • [20]De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969; 40(1):113-121.
  • [21]Diagne CT, Faye O, Guerbois M, Knight R, Diallo D, Faye O et al. Vector Competence of Aedes aegypti and Aedes vittatus (Diptera: Culicidae) from Senegal and Cape Verde Archipelago for West African Lineages of Chikungunya Virus. Am J Trop Med Hyg. 2014. doi:10.4269/ajtmh.13-0627.
  • [22]Rutledge LC, Ward RA, Gould OJ. Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq News. 1964; 24:407-419.
  • [23]Faye O, Faye O, Diallo D, Diallo M, Weidmann M, Sall AA. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J. 2013; 10:311. BioMed Central Full Text
  • [24]Nikolay B, Diallo M, Faye O, Boye CS, Sall AA. Vector competence of Culex neavei (Diptera: Culicidae) for Usutu virus. Am J Trop Med Hyg. 2012; 86(6):993-996.
  • [25]Fall G, Diallo M, Loucoubar C, Faye O. Vector competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for lineages 1, 2, Koutango and a putative new lineage of West Nile virus. Am J Trop Med Hyg. 2014; 90(4):747-754.
  • [26]Chen R, Wang E, Tsetsarkin KA, Weaver SC. Chikungunya virus 3’ untranslated region: adaptation to mosquitoes and a population bottleneck as major evolutionary forces. PLoS Pathog. 2013; 9(8):e1003591.
  • [27]Li MI, Wong PS, Ng LC, Tan CH. Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Negl Trop Dis. 2012; 6(8):e1792.
  • [28]Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013; 7(8):e2348.
  • [29]Smith DR, Carrara A-S, Aguilar PV, Weaver SC. Evaluation of methods to assess transmission potential of Venezuelan equine encephalitis virus by mosquitoes and estimation of mosquito saliva titers. Am J Trop Med Hyg. 2005; 73(1):33-39.
  • [30]Anderson SL, Richards SL, Smartt CT. A simple method for determining arbovirus transmission in mosquitoes. J Am Mosq Control Assoc. 2010; 26(1):108-111.
  • [31]Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis. 2006; 12(8):1190-1196.
  • [32]Faye O, Ba Y, Faye O, Talla C, Diallo D, Chen R et al.. Urban epidemic of dengue virus serotype 3 infection, Senegal, 2009. Emerg Infect Dis. 2014; 20(3):456-459.
  • [33]Tesh RB, Gubler DJ, Rosen L. Variation among geographic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg. 1976; 25(2):326-335.
  • [34]Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti SJ. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg. 1979; 28(6):1045-1052.
  • [35]Adam F, Digoutte JP.Virus d’Afrique (Base de Données). Centre Collaborateur OMS de Référence et de Recherche pour les Arbovirus et les Virus de Fièvres Hémorrhagiques [INTERNET]. Available at http://www.pasteur.fr/recherche/banques/CRORA/. Accessed April 2, 2013. Available from: [http://www.pasteur.fr/recherche/banques/CRORA/] webcite CRORA.
  • [36]Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y et al.. Zika Virus Emergence in Mosquitoes in Southeastern Senegal, 2011. PLoS One. 2014; 9(10):e109442.
  • [37]Miller BR, Monath TP, Tabachnick WJ, Ezike VI. Epidemic yellow fever caused by an incompetent mosquito vector. Trop Med Parasitol. 1989; 40(4):396-399.
  • [38]Diallo D, Sall AA, Diagne CT, Faye O, Hanley KA, Buenemann M et al.. Patterns of a sylvatic yellow fever virus amplification in southeastern Senegal, 2010. Am J Trop Med Hyg. 2014; 90(6):1003-1013.
  文献评价指标  
  下载次数:29次 浏览次数:21次