期刊论文详细信息
BMC Cancer
MicroRNA-645, up-regulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2
Xiaoshan Feng1  Ying Wang1  Zhikun Ma1  Ruina Yang1  Shuo Liang1  Mengxi Zhang1  Shiyuan Song1  Shuoguo Li1  Gang Liu1  Daiming Fan2  Shegan Gao1 
[1] Oncology Department of the First Affiliated Hospital of Henan, University of Science and Technology, No. 24 Jinghua Road, Luoyang, Henan, China
[2] State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
关键词: Apoptosis;    IFIT2;    microRNA-645;    Adencarcinoma of gastric esophageal junction;   
Others  :  1121203
DOI  :  10.1186/1471-2407-14-633
 received in 2013-11-26, accepted in 2014-08-21,  发布年份 2014
PDF
【 摘 要 】

Background

An increasing body of evidence indicates that miRNAs have a critical role in carcinogenesis and cancer progression; however, the role of miRNAs in the tumorigenesis of adencarcinoma of gastric esophageal junction (AGEJ) remains largely unclear.

Methods

The SGC7901 and BGC-823 gastric cancer cell lines were used. The expressions of miR-645 and IFIT2 (Interferon-induced protein with tetratricopeptide repeats 2) were examined by qRT-PCR, The expressions of IFIT2 was examined by western blotting and immunohistochemistry assay. The cell apoptosis was determined by FACS. MiR-645 inhibitor, mimics and plasmid-IFIT2 transfections were performed to study the loss- and gain-function. Caspase-3/7 activity was examined by caspase-3/7 assay.

Results

In the present study, we have reported an increased expression of miR-645 in AGEJ clinical specimens compared with paired non-cancerous tissues. We also observed a significant miR-645 up-regulation in two gastric cancer (GC) cell lines, SGC7901 and BGC-823, which were used as cell models because there was no available AGEJ cell lines established to date. We found that inhibition of miR-645 could sensitize dramatically SGC7901 and BGC-823 cells to both serum starvation– and chemotherapeutic drug–induced apoptosis by up-regulating IFIT2, a mediator of apoptosis via a mitochondrial pathway, with a potential binding site for miR-645 in its mRNA’s 3′UTR. Further investigation exhibited that IFIT2 expression decreases in SGC7901 and BGC-823 cells and AGEJ tissues. IFIT2 ectopic expression leads to promotion of cell apoptosis, indicating that IFIT2 may function as a suppressor in the development of AGEJ. Furthermore, inhibition of miR-645 induces up-regulation of IFIT2 and increased caspase-3/7 activity compared with control groups.

Conclusions

Our data suggest that miR-645 functions as an oncogene in human AGEJ by, at least partially through, targeting IFIT2.

【 授权许可】

   
2014 Feng et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150211022615987.pdf 1346KB PDF download
Figure 6. 63KB Image download
Figure 5. 98KB Image download
Figure 4. 179KB Image download
Figure 3. 71KB Image download
Figure 2. 105KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Vaughan TL, Davis S, Kristal A, Thomas DB: Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomark Prev 1995, 4(2):85-92.
  • [2]Chow W-H, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC: Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1998, 90(2):150-155.
  • [3]Kubo A, Corley DA: Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 2006, 15(5):872-878.
  • [4]Islami F, Sheikhattari P, Ren J, Kamangar F: Gastric atrophy and risk of oesophageal cancer and gastric cardia adenocarcinoma—a systematic review and meta-analysis. Ann Oncol 2011, 22(4):754-760.
  • [5]Devesa SS, Blot WJ, Fraumeni JF: Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998, 83(10):2049-2053.
  • [6]Powell J, McConkey C: Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer 1990, 62(3):440.
  • [7]Lagergren J, Bergström R, Nyrén O: Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 1999, 130(11):883-890.
  • [8]Gammon MD, Ahsan H, Schoenberg JB, West AB, Rotterdam H, Niwa S, Blot WJ, Risch HA, Dubrow R, Mayne ST: Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1997, 89(17):1277-1284.
  • [9]Turati F, Tramacere I, La Vecchia C, Negri E: A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol 2013, 24(3):609-617.
  • [10]Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(suppl 1):D140-D144.
  • [11]Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
  • [12]Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH: MicroRNA expression in zebrafish embryonic development. Science 2005, 309(5732):310-311.
  • [13]Xu P, Vernooy SY, Guo M, Hay BA: The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Curr Biol 2003, 13(9):790-795.
  • [14]Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM: < i > bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene < i > hid in < i > Drosophila. Cell 2003, 113(1):25-36.
  • [15]Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2005, 38(2):228-233.
  • [16]Cheng AM, Byrom MW, Shelton J, Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005, 33(4):1290-1297.
  • [17]Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007, 39(5):673-677.
  • [18]Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009, 137(6):1005-1017.
  • [19]Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011, 18(1):74-82.
  • [20]Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci 2012, 109(8):3024-3029.
  • [21]Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011, 17(2):211-215.
  • [22]Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, Goel A: Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomark Prev 2010, 19(7):1766-1774.
  • [23]Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu C-g, Oue N, Yasui W: Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010, 11(2):136-146.
  • [24]Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M: MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010, 120(4):1298.
  • [25]Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G: Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010, 3(117):ra29.
  • [26]Liu T, Tang H, Lang Y, Liu M, Li X: MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett 2009, 273(2):233-242.
  • [27]Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG: Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 2010, 70(14):5923-5930.
  • [28]Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, Khan AA, Setty M, Rondou P, Vandenberghe P: A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011, 43(7):673-678.
  • [29]Tsuchiya N, Izumiya M, Ogata-Kawata H, Okamoto K, Fujiwara Y, Nakai M, Okabe A, Schetter AJ, Bowman ED, Midorikawa Y: Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21. Cancer Res 2011, 71(13):4628-4639.
  • [30]Wu L-W: Abstract A16: MiR-22 down-regulation via epigenetic control in oral cancer cells. Cancer Res 2012, 72(2 Supplement):A16-A16.
  • [31]Strillacci A, Griffoni C, Sansone P, Paterini P, Piazzi G, Lazzarini G, Spisni E, Pantaleo MA, Biasco G, Tomasi V: MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res 2009, 315(8):1439-1447.
  • [32]Smits M, Nilsson J, Mir SE, van der Stoop PM, Hulleman E, Niers JM, de Witt Hamer PC, Marquez VE, Cloos J, Krichevsky AM: miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 2010, 1(8):710.
  • [33]Kong D, Piao Y-S, Yamashita S, Oshima H, Oguma K, Fushida S, Fujimura T, Minamoto T, Seno H, Yamada Y: Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene 2011, 31(35):3949-3960.
  • [34]Okuda H, Xing F, Pandey PR, Sharma S, Watabe M, Pai SK, Mo Y-Y, Iiizumi-Gairani M, Hirota S, Liu Y: miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 2013, 73(4):1434-1444.
  • [35]Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, Sun S: miR‒17‒5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen‒activated protein kinase‒heat shock protein 27 pathway. Hepatology 2010, 51(5):1614-1623.
  • [36]Yu J, Ohuchida K, Mizumoto K, Fujita H, Nakata K, Tanaka M: MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther 2010, 10(8):748-757.
  • [37]Gao W, Shen H, Liu L, Xu J, Xu J, Shu Y: MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 2011, 137(4):557-566.
  • [38]Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H: MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci 2009, 106(29):12085-12090.
  • [39]Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008, 110(1):13-21.
  • [40]Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Störkel S: EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 2012, 13(1):33-42.
  • [41]Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R, Jiang S, Li G, Chen Y: microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 2009, 1269:158-165.
  • [42]Ma L, Teruya-Feldstein J, Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007, 449(7163):682-688.
  • [43]Huang Q, Gumireddy K, Schrier M, Le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008, 10(2):202-210.
  • [44]Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D: miR‒15b and miR‒16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 2008, 123(2):372-379.
  • [45]Zhu W, Shan X, Wang T, Shu Y, Liu P: miR‒181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010, 127(11):2520-2529.
  • [46]Narvaiza I, Aparicio O, Vera M, Razquin N, Bortolanza S, Prieto J, Fortes P: Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing. J Virol 2006, 80(24):12236-12247.
  • [47]Wyllie A, Carder P, Clarke A, Cripps K, Gledhill S, Greaves M, Griffiths S, Harrison D, Hooper M, Morris R: Apoptosis in carcinogenesis: the role of p53. In Cold Spring Harbor symposia on quantitative biology: 1994. Cold Spring Harbor Laboratory Press; 1994:403-409.
  • [48]Wyllie A: Apoptosis and carcinogenesis. Eur J Cell Biol 1997, 73(3):189.
  • [49]Chen L, Tang Y, Wang J, Yan Z, Xu R: miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4. Biochem Biophys Res Commun 2013, 435(4):745-750.
  • [50]Lin RJ, Lin YC, Yu AL: miR‒149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells. Mol Carcinog 2010, 49(8):719-727.
  • [51]Welch C, Chen Y, Stallings R: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007, 26(34):5017-5022.
  • [52]Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D: miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Experimental Med 2011, 208(3):549-560.
  • [53]Li J-H, Xiao X, Zhang Y-N, Wang Y-M, Feng L-M, Wu Y-M, Zhang Y-X: MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol 2011, 120(1):145-151.
  • [54]Li J, Fu H, Xu C, Tie Y, Xing R, Zhu J, Qin Y, Sun Z, Zheng X: miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 2010, 10(1):354. BioMed Central Full Text
  • [55]Levy D, Kessler D, Pine R, Reich N, Darnell J: Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control. Genes Dev 1988, 2(4):383-393.
  • [56]Karupiah G, Xie Q-w, Buller R, Nathan C, Duarte C, Macmicking JD: Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993, 261(5127):1445-1448.
  • [57]Lee SB, Esteban M: The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 1994, 199(2):491-496.
  • [58]Terenzi F, Hui DJ, Merrick WC, Sen GC: Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem 2006, 281(45):34064-34071.
  • [59]Terenzi F, White C, Pal S, Williams BR, Sen GC: Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J Virol 2007, 81(16):8656-8665.
  • [60]Yang Z, Liang H, Zhou Q, Li Y, Chen H, Ye W, Chen D, Fleming J, Shu H, Liu Y: Crystal structure of ISG54 reveals a novel RNA binding structure and potential functional mechanisms. Cell Res 2012, 22(9):1328-1338.
  • [61]Stawowczyk M, Van Scoy S, Kumar KP, Reich NC: The interferon stimulated gene 54 promotes apoptosis. J Biol Chem 2011, 286(9):7257-7266.
  • [62]Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K: The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000, 6(6):1389-1399.
  文献评价指标  
  下载次数:0次 浏览次数:8次