期刊论文详细信息
BMC Genomics
Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey
Scott F Cummins1  Joel Henry3  Abigail Elizur1  Wayne A O’Connor4  Manzar Sohail1  Min Zhao1  Tianfang Wang1  Bronwyn A Rotgans1  Pascal Favrel2  Michael J Stewart1 
[1] School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia;CNRS UMR 7208, BOREA, Caen, France;Université de Caen Basse-Normandie, Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), Caen 14032, France;Port Stephens Fisheries Institute, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia
关键词: Neuropeptides;    Mass spectrometry;    High-performance liquid chromatography;    Gonadotropin-releasing hormone;    Feed circuit activating peptide;    Egg-laying hormone;    Circular dichroism;    Molluscs;    Crassostrea gigas;    Pinctada fucata;   
Others  :  1139337
DOI  :  10.1186/1471-2164-15-840
 received in 2014-05-19, accepted in 2014-09-03,  发布年份 2014
PDF
【 摘 要 】

Background

Oysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species.

Results

By a combination of in silico data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, Pinctata fucata and the Pacific oyster, Crassostrea gigas, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes.

Conclusion

Our analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.

【 授权许可】

   
2014 Stewart et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321094801914.pdf 1950KB PDF download
Figure 6. 111KB Image download
Figure 5. 199KB Image download
Figure 4. 181KB Image download
Figure 3. 112KB Image download
Figure 2. 178KB Image download
Figure 1. 245KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Burbach JPH: What are neuropeptides? In Neuropeptides: Methods and protocols. Edited by Merighi A. New York: Humana Press; 2011:1-36.
  • [2]Jekely G: Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A 2013, 110(21):8702-8707.
  • [3]Kim YJ, Zitnan D, Galizia CG, Cho KH, Adams ME: A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 2006, 16(14):1395-1407.
  • [4]Hartenstein V: The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 2006, 190(3):555-570.
  • [5]Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340(4):783-795.
  • [6]Tager HS, Steiner DF: Peptide hormones. Annu Rev Biochem 1974, 43:509-538.
  • [7]Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M: Neuropeptides–an overview. Neuropharmacology 2000, 39(8):1337-1356.
  • [8]Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR: Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008, 48:393-423.
  • [9]Eipper BA, Stoffers DA, Mains RE: The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 1992, 15:57-85.
  • [10]Mirabeau O, Joly JS: Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 2013, 110(22):E2028-2037.
  • [11]Feldmesser E, Rosenwasser S, Vardi A, Ben-Dor S: Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi. BMC Genomics 2014, 15:148. BioMed Central Full Text
  • [12]Veenstra JA: Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010, 167(1):86-103.
  • [13]Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, Shoguchi E, Fujiwara M, Shinzato C, Hisata K, Fujie M, Usami T, Nagai K, Maeyama K, Okamoto K, Aoki H, Ishikawa T, Masaoka T, Fujiwara A, Endo K, Endo H, Nagasawa H, Kinoshita S, Asakawa S, Watabe S, Satoh N: Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res 2012, 19(2):117-130.
  • [14]Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, et al.: The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490(7418):49-54.
  • [15]Pit JH: Feasibility of Akoya pearl oyster culture in Queensland. James Cook Universit: Townsvilley; 2004.
  • [16]Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M: Reproduction-related genes in the pearl oyster genome. Zoological Science 2013, 30(10):826-850.
  • [17]Fan X, Croll RP, Wu B, Fang L, Shen Q, Painter SD, Nagle GT: Molecular cloning of a cDNA encoding the neuropeptides APGWamide and cerebral peptide 1: localization of APGWamide-like immunoreactivity in the central nervous system and male reproductive organs of Aplysia. J Comp Neurol 1997, 387(1):53-62.
  • [18]Smit AB, Jimenez CR, Dirks RW, Croll RP, Geraerts WP: Characterization of a cDNA clone encoding multiple copies of the neuropeptide APGWamide in the mollusk Lymnaea stagnalis. J Neurosci 1992, 12(5):1709-1715.
  • [19]Koene JM: Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front Behav Neurosci 2010, 4:167.
  • [20]Henry J, Zatylny C: Identification and tissue mapping of APGWamide-related peptides in Sepia officinalis using LC-ESI-MS/MS. Peptides 2002, 23(6):1031-1037.
  • [21]Henry J, Favrel P, Boucaud-Camou E: Isolation and identification of a novel Ala-Pro-Gly-Trp-amide-related peptide inhibiting the motility of the mature oviduct in the cuttlefish Sepia officinalis. Peptides 1997, 18(10):1469-1474.
  • [22]Favrel P, Mathieu M: Molecular cloning of a cDNA encoding the precursor of Ala-Pro-Gly-Trp amide-related neuropeptides from the bivalve mollusc Mytilus edulis. Neurosci Lett 1996, 205(3):210-214.
  • [23]Henry J, Zatylny C, Favrel P: HPLC and electrospray ionization mass spectrometry as tools for the identification of APGWamide-related peptides in gastropod and bivalve mollusks: comparative activities on Mytilus muscles. Brain Res 2000, 862(1–2):162-170.
  • [24]Cropper EC, Brezina V, Vilim FS, Harish O, Price DA, Rosen S, Kupfermann I, Weiss KR: FRF peptides in the ARC neuromuscular system of Aplysia: purification and physiological actions. J Neurophysiol 1994, 72(5):2181-2195.
  • [25]Hoek RM, Li KW, van Minnen J, Lodder JC, de Jong-Brink M, Smit AB, van Kesteren RE: LFRFamides: a novel family of parasitation-induced -RFamide neuropeptides that inhibit the activity of neuroendocrine cells in Lymnaea stagnalis. J Neurochem 2005, 92(5):1073-1080.
  • [26]Walker RJ, Papaioannou S, Holden-Dye L: A review of FMRFamide- and RFamide-like peptides in metazoa. Invert Neurosci 2009, 9(3–4):111-153.
  • [27]Moulis A: The action of RFamide neuropeptides on molluscs, with special reference to the gastropods Buccinum undatum and Busycon canaliculatum. Peptides 2006, 27(5):1153-1165.
  • [28]Fujino Y, Nagahama T, Oumi T, Ukena K, Morishita F, Furukawa Y, Matsushima O, Ando M, Takahama H, Satake H, Minakata H, Nomoto K: Possible functions of oxytocin/vasopressin-superfamily peptides in annelids with special reference to reproduction and osmoregulation. J Exp Zool 1999, 284(4):401-406.
  • [29]Gajewski M, Leitz T, Schloßherr J, Plickert G: LWamides from Cnidaria constitute a novel family of neuropeptides with morphogenetic activity. Rouxs Arch Dev Biol 1996, 205:232-242.
  • [30]Matsushima O, Takahashi T, Morishita F, Fujimoto M, Ikeda T, Kubota I, Nose T, Miki W: Two S-Iamide peptides, AKSGFVRIamide and VSSFVRIamide, isolated from an annelid, Perinereis vancaurica. Biol Bull 2002, 184:216-222.
  • [31]Conzelmann M, Williams EA, Krug K, Franz-Wachtel M, Macek B, Jekely G: The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics 2013, 14:906. BioMed Central Full Text
  • [32]Kuroki Y, Kanda T, Kubota I, Ikeda T, Fujisawa Y, Minakata H, Muneoka Y: FMRFamide-related peptides isolated from the prosobranch mollusc Fusinus ferrugineus. Acta Biol Hung 1993, 44(1):41-44.
  • [33]Galtsoff PS: Physiology of reproduction of Ostrea virginica. II. Stimulation of Spawning in the Female Oyster. Biol Bull 1938, 75(2):286-307.
  • [34]Roch GJ, Busby ER, Sherwood NM: Evolution of GnRH: diving deeper. Gen Comp Endocrinol 2011, 171(1):1-16.
  • [35]Iwakoshi E, Takuwa-Kuroda K, Fujisawa Y, Hisada M, Ukena K, Tsutsui K, Minakata H: Isolation and characterization of a GnRH-like peptide from Octopus vulgaris. Biochem Biophys Res Commun 2002, 291(5):1187-1193.
  • [36]Zhang L, Tello JA, Zhang W, Tsai PS: Molecular cloning, expression pattern, and immunocytochemical localization of a gonadotropin-releasing hormone-like molecule in the gastropod mollusk. Aplysia californica. Gen Comp Endocrinol 2008, 156(2):201-209.
  • [37]Nakamura S, Osada M, Kijima A: Involvement of GnRH neuron in the spermatogonial proliferation of the scallop. Patinopecten yessoensiss. Mol Reprod Dev 2007, 74(1):108-115.
  • [38]Bigot L, Zatylny-Gaudin C, Rodet F, Bernay B, Boudry P, Favrel P: Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas. Peptides 2012, 34(2):303-310.
  • [39]Strumwasser F, Schiller DL, Kent SBH: Synthetic neuropeptide egg- laying hormone (ELH) of Aplysia californica induces normal egg-laying: structure-activity studies. Soc Neurosci Abstr 1987, 13:38.
  • [40]Cummins SF, York PS, Hanna PH, Degnan BM, Croll RP: Expression of prohormone convertase 2 and the generation of neuropeptides in the developing nervous system of the gastropod Haliotis. Int J Dev Biol 2009, 53(7):1081-1088.
  • [41]Cummins SF, Nuurai P, Nagle GT, Degnan BM: Conservation of the egg-laying hormone neuropeptide and attractin pheromone in the spotted sea hare, Aplysia dactylomela. Peptides 2010, 31(3):394-401.
  • [42]Kamatani Y, Minakata H, Kenny PT, Iwashita T, Watanabe K, Funase K, Sun XP, Yongsiri A, Kim KH, Novales-Li P, Novales ET, Kanapi CG, Takeuchi H, Nomoto K: Achatin-I, an endogenous neuroexcitatory tetrapeptide from Achatina fulica Ferussac containing a D-amino acid residue. Biochem Biophys Res Commun 1989, 160(3):1015-1020.
  • [43]Liu GJ, Takeuchi H: Modulation of neuropeptide effects by achatin-I, an Achatina endogenous tetrapeptide. Eur J Pharmacol 1993, 240(2–3):139-145.
  • [44]Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ: Identification of an allatotropin from adult Manduca sexta. Science 1989, 243(4897):1481-1483.
  • [45]Schoofs L, Jensson T, Nachman RJ: Sulfakinins. In Handbook of Biological Active Peptides, Volume 2. Edited by Kastin AJ. San Diego: Elsevier Press; 2013:310-314.
  • [46]Elphick MR: NG peptides: A novel family of neurophysin-associated neuropeptides. Gene 2010, 458:20-26.
  • [47]Van Kesteren RE, Smit AB, De Lange RP, Kits KS, Van Golen FA, Van Der Schors RC, De With ND, Burke JF, Geraerts WP: Structural and functional evolution of the vasopressin/oxytocin superfamily: vasopressin-related conopressin is the only member present in Lymnaea, and is involved in the control of sexual behavior. J Neurosci 1995, 15(9):5989-5998.
  • [48]Taussig R, Kaldany RR, Rothbard JB, Schoolnik G, Scheller RH: Expression of the L11 neuropeptide gene in the Aplysia central nervous system. J Comp Neurol 1985, 238(1):53-64.
  • [49]Veenstra JA: Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. Gen Comp Endocrinol 2011, 171(2):160-175.
  • [50]Nassel DR, Wegener C: A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011, 32(6):1335-1355.
  • [51]Zatylny-Gaudin C, Bernay B, Zanuttini B, Leprince J, Vaudry H, Henry J: Characterization of a novel LFRFamide neuropeptide in the cephalopod Sepia officinalis. Peptides 2010, 31(2):207-214.
  • [52]Bigot L, Beets I, Dubos MP, Boudry P, Schoofs L, Favrel P: Functional characterization of a short neuropeptide F-related receptor in a Lophotrochozoa, the mollusk Crassostrea gigas. J Exp Biol 2014, 217:2974-2982.
  • [53]Li KW, el Filali Z, Van Golen FA, Geraerts WP: Identification of a novel amide peptide, GLTPNMNSLFF-NH2, involved in the control of vas deferens motility in lymnaea stagnalis. Eur J Biochem 1995, 229(1):70-72.
  • [54]Sellami A, Agricola HJ, Veenstra JA: Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPB5, a hormone with homology to LH FSH and TSH. Gen Comp Endocrinol 2011, 170(3):582-588.
  • [55]Paluzzi J-P, Vanderveken M, O'Donnell MJ: The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti. PLoS One 2014. doi:10.1371/journal.pone.0086386
  • [56]Nakabayashi K, Matsumi H, Bhalla A, Bae J, Mosselman S, Hsu SY, Hsueh AJ: Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. J Clin Invest 2002, 109(11):1445-1452.
  • [57]Dos Santos S, Bardet C, Bertrand S, Escriva H, Habert D, Querat B: Distinct expression patterns of glycoprotein hormone-alpha2 and -beta5 in a basal chordate suggest independent developmental functions. Endocrinology 2009, 150(8):3815-3822.
  • [58]Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J: Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 2005, 579(10):2171-2176.
  • [59]Herpin A, Badariotti F, Rodet F, Favrel P: Molecular characterization of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochim Biophys Acta 2004, 1680(3):137-144.
  • [60]Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Tanguy A, Moraga D, Fabioux C, Lindeque P, Shaw J, Reinhardt R, Prunet P, Davey G, Lapègue S, Sauvage C, Corporeau C, Moal J, Gavory F, Wincker P, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P: Generation and analysis of a 29,745 unique Expressed Sequence Tags from the Pacific oyster (Crassostrea gigas) assembled into a publicly accessible database: the GigasDatabase. BMC Genomics 2009, 10:341. BioMed Central Full Text
  • [61]Kumar S, Stecher G, Peterson D, Tamura K: MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 2012, 28(20):2685-2686.
  • [62]Brunak S, Engelbrecht J, Knudsen S: Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991, 220(1):49-65.
  • [63]Floyd PD, Li L, Moroz TP, Sweedler JV: Characterization of peptides from Aplysia using microbore liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry guided purification. J Chromatogr A 1999, 830(1):105-113.
  • [64]Hamano K, Awaji M, Usuki H: cDNA structure of an insulin-related peptide in the Pacific oyster and seasonal changes in the gene expression. J Endocrinol 2005, 187(1):55-67.
  • [65]Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV: NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 2006, 34(Web Server issue):W267-272.
  • [66]Beitz E: TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 2000, 16(2):135-139.
  • [67]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
  • [68]Frickey T, Lupas A: CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 2004, 20(18):3702-3704.
  • [69]Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X: DOG 1.0: illustrator of protein domain structures. Cell Res 2009, 19(2):271-273.
  • [70]Case DA, Darden TA, Cheatham ITE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA: AMBER 11. San Francisco: University of California; 2010.
  • [71]Simmerling C, Strockbine B, Roitberg AE: All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 2002, 124:11258-11259.
  • [72]Whitmore L, Woollett B, Miles AJ, Janes RW, Wallace BA: The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data. Structure 2010, 18(10):1267-1269.
  • [73]Whitmore L, Wallace BA: DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 2004, 32(Web Server issue):W668--673.
  • [74]Lobley A, Whitmore L, Wallace BA: DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 2002, 18(1):211-212.
  文献评价指标  
  下载次数:54次 浏览次数:29次