BMC Microbiology | |
Evidence of an increased pathogenic footprint in the lingual microbiome of untreated HIV infected patients | |
Michael D George3  Bruce J Paster6  Satya Dandekar3  Chia-Yuan Michael Lee2  Chin-Shang Li4  Sumathi Sankaran-Walters3  Sean Cotton5  Angeline T Dang1  | |
[1] Dept. of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA;Neuroscience Undergraduate Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA;Dept. of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA;Dept. of Public Health Services, University of California, Davis, Davis, CA, USA;Dept. of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA;Dept. of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA | |
关键词: HOMIM; Microbiome; Commensal; Streptococcus; CD4+ T cells; Dysbiosis; Oral mucosa; Microbiota; HIV; | |
Others : 1221811 DOI : 10.1186/1471-2180-12-153 |
|
received in 2011-09-26, accepted in 2012-07-12, 发布年份 2012 | |
【 摘 要 】
Background
Opportunistic oral infections can be found in over 80% of HIV + patients, often causing debilitating lesions that also contribute to deterioration in nutritional health. Although appreciation for the role that the microbiota is likely to play in the initiation and/or enhancement of oral infections has grown considerably in recent years, little is known about the impact of HIV infection on host-microbe interactions within the oral cavity. In the current study, we characterize modulations in the bacterial composition of the lingual microbiome in patients with treated and untreated HIV infection. Bacterial species profiles were elucidated by microarray assay and compared between untreated HIV infected patients, HIV infected patients receiving antiretroviral therapy, and healthy HIV negative controls. The relationship between clinical parameters (viral burden and CD4+ T cell depletion) and the loss or gain of bacterial species was evaluated in each HIV patient group.
Results
In untreated HIV infection, elevated viremia was associated with significantly higher proportions of potentially pathogenic Veillonella, Prevotella, Megasphaera, and Campylobacter species in the lingual microbiome than observed in healthy controls. The upsurge in the prevalence of potential pathogens was juxtaposed by diminished representation of commensal Streptococcus and Veillonella species. Colonization of Neisseria flavescens was lower in the lingual microbiome of HIV infected patients receiving antiretroviral therapy than in uninfected controls.
Conclusions
Our findings provide novel insights into the potential impact of HIV infection and antiretroviral therapy on the community structure of the oral microbiome, and implicate potential mechanisms that may increase the capacity of non-commensal species to gain a stronger foothold.
【 授权许可】
2012 Dang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150803223655366.pdf | 515KB | download | |
Figure 6. | 74KB | Image | download |
Figure 5. | 25KB | Image | download |
Figure 4. | 103KB | Image | download |
Figure 3. | 51KB | Image | download |
Figure 2. | 46KB | Image | download |
Figure 1. | 60KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]McCune JM: The dynamics of CD4+ T-cell depletion in HIV disease. Nature 2001, 410(6831):974-979.
- [2]Egusa H, Soysa NS, Ellepola AN, Yatani H, Samaranayake LP: Oral candidosis in HIV-infected patients. Curr HIV Res 2008, 6(6):485-499.
- [3]Hazenberg MD, Hamann D, Schuitemaker H, Miedema F: T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 2000, 1(4):285-289.
- [4]Reznik DA: Oral manifestations of HIV disease. Top HIV Med 2005, 13(5):143-148.
- [5]Myers TA, Leigh JE, Arribas AR, Hager S, Clark R, Lilly E, Fidel PL: Immunohistochemical evaluation of T cells in oral lesions from human immunodeficiency virus-positive persons with oropharyngeal candidiasis. Infect Immun 2003, 71(2):956-963.
- [6]Leigh JE, McNulty KM, Fidel PL: Characterization of the immune status of CD8+ T cells in oral lesions of human immunodeficiency virus-infected persons with oropharyngeal Candidiasis. Clin Vaccine Immunol 2006, 13(6):678-683.
- [7]Challacombe SJ, Naglik JR: The effects of HIV infection on oral mucosal immunity. Adv Dent Res 2006, 19(1):29-35.
- [8]Dandekar S, George MD, Baumler AJ: Th17 cells, HIV and the gut mucosal barrier. Curr Opin HIV AIDS 2010, 5(2):173-178.
- [9]Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, Dandekar S: Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol 2008, 82(1):538-545.
- [10]George MD, Verhoeven D, Sankaran S, Glavan T, Reay E, Dandekar S: Heightened cytotoxic responses and impaired biogenesis contribute to early pathogenesis in the oral mucosa of simian immunodeficiency virus-infected rhesus macaques. Clin Vaccine Immunol 2009, 16(2):277-281.
- [11]Donlan RM, Costerton JW: Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002, 15(2):167.
- [12]Foster JS, Palmer RJ, Kolenbrander PE: Human oral cavity as a model for the study of genome-genome interactions. In: 2003. Marine Biological Laboratory 2003, 204(2):200-204.
- [13]Lewis K: Riddle of biofilm resistance. Antimicrob Agents Chemother 2001, 45(4):999-1007.
- [14]Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE: Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005, 43(11):5721-5732.
- [15]Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, Kozakova H, Rossmann P, Bartova J, Sokol D, et al.: Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2004, 93(2–3):97-108.
- [16]Alexopoulou L, Kontoyiannis D: Contribution of microbial-associated molecules in innate mucosal responses. Cell Mol Life Sci 2005, 62(12):1349-1358.
- [17]Kelly D, Conway S: Bacterial modulation of mucosal innate immunity. Mol Immunol 2005, 42(8):895-901.
- [18]Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A: The oral metagenome in health and disease. ISME J 2012, 6(1):46-56.
- [19]Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG: The human oral microbiome. J Bacteriol 2010, 192(19):5002-5017.
- [20]Mitchell J: Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011, 26(2):89-98.
- [21]Zaura E, Keijser BJ, Huse SM, Crielaard W: Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 2009, 9:259.
- [22]Nittayananta W, Talungchit S, Jaruratanasirikul S, Silpapojakul K, Chayakul P, Nilmanat A, Pruphetkaew N: Effects of long-term use of HAART on oral health status of HIV-infected subjects. J Oral Pathol Med 2010, 39(5):397-406.
- [23]Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ: Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics 2011, 4:22.
- [24]Marchandin H, Jumas-Bilak E, Gay B, Teyssier C, Jean-Pierre H: de Buochberg MS, Carriere C. Carlier JP: Phylogenetic analysis of some Sporomusa sub-branch members isolated from human clinical specimens: description of Megasphaera micronuciformis sp. nov. Int J Syst Evol Microbiol 2003, 53(Pt 2):547-553.
- [25]Dahan S, Rabinowitz KM, Martin AP, Berin MC, Unkeless JC, Mayer L: Notch-1 signaling regulates intestinal epithelial barrier function, through interaction with CD4+ T cells, in mice and humans. Gastroenterology 2011, 140(2):550-559.
- [26]Casey LM, Lan Y, Cho ES, Maltby KM, Gridley T, Jiang R: Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Developmental dynamics : an official publication of the American Association of Anatomists 2006, 235(7):1830-1844.
- [27]Milner JD, Sandler NG, Douek DC: Th17 cells, Job's syndrome and HIV: opportunities for bacterial and fungal infections. Curr Opin HIV AIDS 2010, 5(2):179-183.
- [28]Stange J, Hepworth MR, Rausch S, Zajic L, Kuhl AA, Uyttenhove C, Renauld JC, Hartmann S, Lucius R: IL-22 mediates host defense against an intestinal intracellular parasite in the absence of IFN-gamma at the cost of Th17-driven immunopathology. J Immunol 2012, 188(5):2410-2418.
- [29]Torres SR, Garzino-Demo A, Meiller TF, Meeks V, Jabra-Rizk MA: Salivary histatin-5 and oral fungal colonisation in HIV + individuals. Mycoses 2009, 52(1):11-15.
- [30]Nittayananta W, Hladik F, Klausner M, Harb S, Dale BA, Coombs RW: HIV type 1 fails to trigger innate immune factor synthesis in differentiated oral epithelium. AIDS Res Hum Retroviruses 2009, 25(10):1013-1021.
- [31]Chertov O, Yang D, Howard OM, Oppenheim JJ: Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 2000, 177:68-78.
- [32]Rogosa M: The Genus Veillonella. I.General Cultural, Ecological, and Biochemical Considerations. J Bacteriol 1964, 87:162-170.
- [33]Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, et al.: Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 2011, 49(4):1464-1474.
- [34]Sassone L, Fidel R, Figueiredo L, Fidel S, Faveri M, Feres M: Evaluation of the microbiota of primary endodontic infections using checkerboard DNA-DNA hybridization. Oral Microbiol Immunol 2007, 22(6):390-397.
- [35]Hughes CV, Kolenbrander PE, Andersen RN, Moore LV: Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology. Appl Environ Microbiol 1988, 54(8):1957-1963.
- [36]Matera G, Muto V, Vinci M, Zicca E, Abdollahi-Roodsaz S, van de Veerdonk FL, Kullberg BJ, Liberto MC, van der Meer JW, Foca A, et al.: Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide. Clin Vaccine Immunol 2009, 16(12):1804-1809.
- [37]Nokta M: Oral manifestations associated with HIV infection. Curr HIV/AIDS Rep 2008, 5(1):5-12.
- [38]Parveen Z, Acheampong E, Pomerantz RJ, Jacobson JM, Wigdahl B, Mukhtar M: Effects of highly active antiretroviral therapy on HIV-1-associated oral complications. Curr HIV Res 2007, 5(3):281-292.
- [39]Arotiba JT, Arowojolu MO, Fasola AO, Denloye OO, Obiechina AE: Oral manifestation of HIV/AIDS. Afr J Med Med Sci 2006, 35(Suppl):13-18.
- [40]Feller L, Khammissa RA, Gugushe TS, Chikte UM, Wood NH, Meyerov R, Lemmer J: HIV-associated Kaposi sarcoma in African children. SADJ 2010, 65(1):20-22.
- [41]Paster BJ, Dewhirst FE: Molecular microbial diagnosis. Periodontol 2009, 51:38-44.
- [42]Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, et al.: Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol 2009, 80(9):1421-1432.
- [43]Paster BJ, Russell MK, Alpagot T, Lee AM, Boches SK, Galvin IL, Dewhirst FE: Bacterial diversity in necrotizing ulcerative periodontitis in HIV-positive subjects. Ann Periodontol 2002, 7(1):8-16.