期刊论文详细信息
BMC Developmental Biology
The expression of diacylglycerol kinase theta during the organogenesis of mouse embryos
Yasuhito Shirai1  Daniel M Raben2  Minoru Yamanoue1  Becky Tu-Sekine2  Shuji Ueda1 
[1] Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan;Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
关键词: Epidermis;    Central nerve system;    Embryonic development;    Diacylglycerol kinase;   
Others  :  1085490
DOI  :  10.1186/1471-213X-13-35
 received in 2013-02-07, accepted in 2013-09-27,  发布年份 2013
PDF
【 摘 要 】

Background

Diacylglycerol kinase (DGK) is a key enzyme that regulates diacylglycerol (DG) turnover and is involved in a variety of physiological functions. The isoform DGKθ has a unique domain structure and is the sole member of type V DGK. To reveal the spatial and temporal expression of DGKθ we performed immunohistochemical staining on paraffin sections of mouse embryos.

Results

At an early stage of development (E10.5 and 11.5), the expression of DGKθ was prominently detected in the brain, spinal cord, dorsal root ganglion, and limb bud, and was also moderately detected in the bulbus cordis and the primordium of the liver and gut. At later stages (E12.5 and 14.5), DGKθ expression persisted or increased in the neocortex, epithalamus, hypothalamus, medulla oblongata, and pons. DGKθ was also evident in the epidermis, and nearly all epithelia of the oropharyngeal membrane, digestive tract, and bronchea. At prenatal developmental stages (E16.5 and E18.5), the expression pattern of DGKθ was maintained in the central nervous system, intestine, and kidney, but was attenuated in the differentiated epidermis.

Conclusion

These results suggest that DGKθ may play important physiological roles not only in the brain, but also in diverse organs and tissues during the embryonic stages.

【 授权许可】

   
2013 Ueda et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113173842771.pdf 2832KB PDF download
Figure 4. 34KB Image download
Figure 3. 248KB Image download
Figure 2. 300KB Image download
Figure 1. 253KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Ahmed S, Lee J, Kozma R, Best A, Monfries C, Lim L: A novel functional target for tumor-promoting phorbol esters and lysophosphatidic acid. The p21rac-GTPase activating protein n-chimaerin. J Biol Chem 1993, 268(15):10709-10712.
  • [2]Jones DR, Sanjuan MA, Stone JC, Merida I: Expression of a catalytically inactive form of diacylglycerol kinase alpha induces sustained signaling through RasGRP. FASEB J 2002, 16(6):595-597.
  • [3]Topham MK, Prescott SM: Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. J Cell Biol 2001, 152(6):1135-1143.
  • [4]Venkatachalam K, Zheng F, Gill DL: Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003, 278(31):29031-29040.
  • [5]Nishizuka Y: Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995, 9(7):484-496.
  • [6]Yang C, Kazanietz MG: Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol Sci 2003, 24(11):602-608.
  • [7]Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ: Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 1994, 304(Pt 3):1001-1008.
  • [8]Topham MK, Prescott SM: Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 1999, 274(17):11447-11450.
  • [9]Kanoh H, Yamada K, Sakane F: Diacylglycerol kinases: emerging downstream regulators in cell signaling systems. Can J Biochem 2002, 131(5):629-633.
  • [10]Merida I, Avila-Flores A, Merino E: Diacylglycerol kinases: at the hub of cell signalling. Biochem J 2008, 409(1):1-18.
  • [11]van Blitterswijk WJ, Houssa B: Properties and functions of diacylglycerol kinases. Cell Signal 2000, 12(9–10):595-605.
  • [12]Wattenberg BW, Pitson SM, Raben DM: The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 2006, 47(6):1128-1139.
  • [13]Shirai Y, Kouzuki T, Kakefuda K, Moriguchi S, Oyagi A, Horie K, Morita SY, Shimazawa M, Fukunaga K, Takeda J, et al.: Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function. PLoS One 2010, 5(7):e11602.
  • [14]Flores I, Casaseca T, Martinez AC, Kanoh H, Merida I: Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem 1996, 271(17):10334-10340.
  • [15]Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP: Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol 2006, 7(11):1174-1181.
  • [16]Formoso D, Weber RN, Atkins MS: Gentrification and urban children’s well-being: tipping the scales from problems to promise. Am J Community Psychol 2010, 46(3–4):395-412.
  • [17]Liu CH, Machado FS, Guo R, Nichols KE, Burks AW, Aliberti JC, Zhong XP: Diacylglycerol kinase zeta regulates microbial recognition and host resistance to Toxoplasma gondii. J Exp Med 2007, 204(4):781-792.
  • [18]Rodriguez De Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG: Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci USA 2001, 98(8):4740-4745.
  • [19]Hozumi Y, Goto K: Diacylglycerol kinase beta in neurons: functional implications at the synapse and in disease. Adv Biol Regul 2012, 52(2):315-325.
  • [20]McMullan R, Hiley E, Morrison P, Nurrish SJ: Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C-elegans. Gene Dev 2006, 20(1):65-76.
  • [21]Houssa B, Schaap D, van der Wal J, Goto K, Kondo H, Yamakawa A, Shibata M, Takenawa T, van Blitterswijk WJ: Cloning of a novel human diacylglycerol kinase (DGKtheta) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. J Biol Chem 1997, 272(16):10422-10428.
  • [22]Tabellini G, Bortul R, Santi S, Riccio M, Baldini G, Cappellini A, Billi AM, Berezney R, Ruggeri A, Cocco L, et al.: Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp Cell Res 2003, 287(1):143-154.
  • [23]Houssa B, de Widt J, Kranenburg O, Moolenaar WH, van Blitterswijk WJ: Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA. J Biol Chem 1999, 274(11):6820-6822.
  • [24]van Baal J, de Widt J, Divecha N, van Blitterswijk WJ: Translocation of diacylglycerol kinase theta from cytosol to plasma membrane in response to activation of G protein-coupled receptors and protein kinase C. J Biol Chem 2005, 280(11):9870-9878.
  • [25]Tu-Sekine B, Goldschmidt H, Petro E, Raben DM: Diacylglycerol kinase theta: Regulation and stability. Adv Biol Regul 2013, 53(1):118-126.
  • [26]Tu-Sekine B, Raben DM: Dual Regulation of Diacylglycerol Kinase (DGK)-theta: POLYBASIC PROTEINS PROMOTE ACTIVATION BY PHOSPHOLIPIDS AND INCREASE SUBSTRATE AFFINITY. J Biol Chem 2012, 287(50):41619-41627.
  • [27]Tu-Sekine B, Raben DM: Regulation of DGK-theta. J Cell Physiol 2009, 220(3):548-552.
  • [28]van Baal J, de Widt J, Divecha N, van Blitterswijk WJ: Diacylglycerol kinase theta counteracts protein kinase C-mediated inactivation of the EGF receptor. Int J Biochem Cell Biol 2012, 44(11):1791-1799.
  • [29]Tabellini G, Billi AM, Fala F, Cappellini A, Evagelisti C, Manzoli L, Cocco L, Martelli AM: Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells. Cell Signal 2004, 16(11):1263-1271.
  • [30]Tu-Sekine B, Ostroski M, Raben DM: Modulation of diacylglycerol kinase theta activity by alpha-thrombin and phospholipids. Biochemistry 2007, 46(3):924-932.
  • [31]Baldanzi G, Alchera E, Imarisio C, Gaggianesi M, Dal Ponte C, Nitti M, Domenicotti C, van Blitterswijk WJ, Albano E, Graziani A, et al.: Negative regulation of diacylglycerol kinase theta mediates adenosine-dependent hepatocyte preconditioning. Cell Death Differ 2010, 17(6):1059-1068.
  • [32]Imai F, Hirai S, Akimoto K, Koyama H, Miyata T, Ogawa M, Noguchi S, Sasaoka T, Noda T, Ohno S: Inactivation of aPKClambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 2006, 133(9):1735-1744.
  • [33]Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K: The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent "inside-out" lamination in the neocortex. J Neurosci 2011, 31(25):9426-9439.
  • [34]Adachi N, Oyasu M, Taniguchi T, Yamaguchi Y, Takenaka R, Shirai Y, Saito N: Immunocytochemical localization of a neuron-specific diacylglycerol kinase beta and gamma in the developing rat brain. Brain Res Mol Brain Re 2005, 139(2):288-299.
  • [35]Goto K, Funayama M, Kondo H: Cloning and expression of a cytoskeleton-associated diacylglycerol kinase that is dominantly expressed in cerebellum. Proc Natl Acad Sci USA 1994, 91(26):13042-13046.
  • [36]Goto K, Kondo H: Molecular cloning and expression of a 90-kDa diacylglycerol kinase that predominantly localizes in neurons. Proc Natl Acad Sci USA 1993, 90(16):7598-7602.
  • [37]Goto K, Kondo H: Diacylglycerol kinase in the central nervous system–molecular heterogeneity and gene expression. Chem Phys Lipids 1999, 98(1–2):109-117.
  • [38]Musto A, Bazan NG: Diacylglycerol kinase epsilon modulates rapid kindling epileptogenesis. Epilepsia 2006, 47(2):267-276.
  • [39]Tu-Sekine B, Raben DM: Regulation and roles of neuronal diacylglycerol kinases: a lipid perspective. Crit Rev Biochem Mol Biol 2011, 46(5):353-364.
  • [40]Nurrish S, Segalat L, Kaplan JM: Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 1999, 24(1):231-242.
  • [41]Miller KG, Emerson MD, Rand JB: Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron 1999, 24(2):323-333.
  • [42]Bilasy SE, Satoh T, Ueda S, Wei P, Kanemura H, Aiba A, Terashima T, Kataoka T: Dorsal telencephalon-specific RA-GEF-1 knockout mice develop heterotopic cortical mass and commissural fiber defect. Suppl Eur J Neurosci 2009, 29(10):1994-2008.
  • [43]Kanemura H, Satoh T, Bilasy SE, Ueda S, Hirashima M, Kataoka T: Impaired vascular development in the yolk sac and allantois in mice lacking RA-GEF-1. Biochem Biophys Res Commun 2009, 387(4):754-759.
  • [44]Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, et al.: Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 2010, 24(7):2254-2261.
  • [45]Tu-Sekine B, Raben DM: Characterization of cellular DGK-theta. Adv Enzyme Regul 2010, 50(1):81-94.
  • [46]Ueda S, Kataoka T, Satoh T: Role of the Sec14-like domain of Dbl family exchange factors in the regulation of Rho family GTPases in different subcellular sites. Cell Signal 2004, 16(8):899-906.
  文献评价指标  
  下载次数:14次 浏览次数:30次