期刊论文详细信息
BMC Cell Biology
Signal dependent ER export of lemur tyrosine kinase 2
Neil A. Bradbury1  E. C. Butler1 
[1]Department of Physiology and Biophysics, Chicago Medical School, 3333 Green Bay Rd, North Chicago 60064, IL, USA
关键词: Recycling;    Transferrin;    ER export;    Di-acidic;    LMTK2;   
Others  :  1232398
DOI  :  10.1186/s12860-015-0072-6
 received in 2015-08-03, accepted in 2015-11-06,  发布年份 2015
PDF
【 摘 要 】

Background

The membrane anchored kinase, LMTK2, is a serine/threonine kinase predominantly localized to endosomal compartments. LMTK2 has been shown to be involved in the trafficking of the CFTR ion channel, the androgen receptor, as well as modulating neurodegeneration. As a membrane anchored protein, LMTK2 must be exported from the ER, yet the mechanisms whereby LMTK2 is sequestered within the ER for efficient export are unknown.

Methods

Sequence analysis of the carboxyl tail of LMTK2 revealed a putative di-acidic ER export motif. Site-directed mutagenesis was utilized to ablate this potential motif. Subcellular fractionation, immunofluorescence microscopy, and transferrin recycling assays were used to determine the consequence of mutating LMTK2’s export motif.

Results

Mutation of the di-acidic export motif led to ER retention of LMTK2, and an increase in protein half-life and a concomitant loss of LMTK2 from its appropriate terminal destination. Loss of LMTK2 from endosomal compartments by preventing its release from the ER is linked to a reduction in transferrin recycling.

Conclusions

We have identified a di-acidic ER export motif within the carboxyl tail of the membrane anchored kinase LMTK2. This sequence is used by LMTK2 for its efficient export from the ER.

【 授权许可】

   
2015 Butler and Bradbury.

【 预 览 】
附件列表
Files Size Format View
20151114014346556.pdf 2840KB PDF download
Fig. 6. 76KB Image download
Fig. 5. 15KB Image download
Fig. 4. 77KB Image download
Fig. 3. 29KB Image download
Fig. 2. 86KB Image download
Fig. 1. 64KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Barlowe C. Signals for COPII-dependent export from the ER: what’s the ticket out? Trends Cell Biol. 2003; 13:295-300.
  • [2]Mancias JD, Goldberg J. Exiting the endoplasmic reticulum. Traffic. 2005; 6:278-85.
  • [3]Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell. 2005; 122:605-17.
  • [4]Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi complex. Annu Rev Biochem. 1987; 56:829-52.
  • [5]Malkus P, Jiang F, Schekman R. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol. 2002; 159:915-21.
  • [6]Miller E, Antonny B, Hamamoto S, Schekman R. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J. 2002; 21:6105-13.
  • [7]Kuehn MJ, Herrmann JM, Schekman R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature. 1998; 391:187-90.
  • [8]Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett. 2007; 581:2076-82.
  • [9]Hauri HP, Kappeler F, Andersson H, Appenzeller C. ERGIC-53 and traffic in the secretory pathway. J Cell Sci. 2000; 113(Pt 4):587-96.
  • [10]Sevier CS, Weisz OA, Davis M, Machamer CE. Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs. Mol Biol Cell. 2000; 11:13.
  • [11]Mikosch M, Kaberich K, Homann U. ER export of KAT1 is correlated to the number of acidic residues within a triacidic motif. Traffic. 2009; 10:1481-7.
  • [12]Zuzarte M, Rinne S, Schlichthorl G, Schubert A, Daut J, Preisig-Müller R. A di-acidic sequence motif enhances the surface expression of the potassium channel TASK-3. Traffic. 2007; 8:1093-100.
  • [13]Hofherr A, Fakler B, Klockner N. Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers. J Cell Sci. 2005; 118:1935-43.
  • [14]Fu L, Sztul E. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. J Cell Biol. 2003; 160:157-63.
  • [15]Wang X, Metteson J, An Y, Moyer B, Yoo J-S, Bannykh S et al.. COPII-dependent export of the cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J Cell Biol. 2004; 167:65-74.
  • [16]Zhang X, Dong C, Wu QJ, Balch WE, Guangyu W. Di-acidic motifs in the membrane-distal C-termini modulate the transport of angiotensin II receptors from the endoplasmic reticulum to the cell surface. J Biol Chem. 2011; 286:20525-35.
  • [17]Kawa S, Fujimoto J, Tezuka T, Nakazawa T, Yamamoto T. Involvement of BREK, a serine/threonine kinase enriched in brain, in NGF signalling. Genes Cells. 2004; 9:219-32.
  • [18]Wang H, Brautigan DL. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem. 2002; 277:49605-12.
  • [19]Luz S, Cihil KM, Brautigan DL, Amaral MD, Farinha CM, Swiatecka-Urban A. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells. J Biol Chem. 2014; 289:15080-93.
  • [20]Wang H, Brautigan DL. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase. Mol Cell Proteomics. 2006; 5:2124-30.
  • [21]Shah K, Bradbury NA. Kinases modulation of androgen receptor signaling: implications for prostate cancer therapy. Cancer Cell Microenvironment. 2015. in press.
  • [22]Shah K, Bradbury NA. Lemur Tyrosine Kinase 2, a novel target in prostate cancer therapy. Oncotarget. 2015; 6:14233-46.
  • [23]Rattray M. New insights on regulation of LMTK2, a membrane kinase integrating pathways central to neurodegeneration. J Neurochem. 2012; 121:327-8.
  • [24]Sakugawa N, Miyamoto T, Tsujimura A, Koh E, Miyagawa Y, Sato H et al.. LMTK2 and PARP-2 gene polymorphism and azoospermia secondary to meiotic arrest. J Assist Reprod Genet. 2009; 26:545-52.
  • [25]Chibalina MV, Seaman MN, Miller CC, Kendrick-Jones J, Buss F. Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment. J Cell Sci. 2007; 120:4278-88.
  • [26]Inoue T, Kon T, Ohkura R, Yamakawa H, Ohara O, Yokota J et al.. BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking. Genes Cells. 2008; 13:483-95.
  • [27]Manser C, Guillot F, Vagnoni A, Davies J, Lau KF, McLoughlin DM et al.. Lemur tyrosine kinase-2 signalling regulates kinesin-1 light chain-2 phosphorylation and binding of Smad2 cargo. Oncogene. 2012; 31:2773-82.
  • [28]Manser C, Vagnoni A, Guillot F, Davies J, Miller CC. Cdk5/p35 phosphorylates lemur tyrosine kinase-2 to regulate protein phosphatase-1C phosphorylation and activity. J Neurochem. 2012; 121:343-8.
  • [29]Nixon A, Jia Y, White C, Bradbury NA. Determination of the membrane topology of lemur tyrosine kinase 2 (LMTK2) by fluorescence protease protection. Am J Physiol Cell Physiol. 2013; 304:C164-9.
  • [30]White C, Nixon A, Bradbury NA. Determining membrane protein topology using fluorescence protease protection (FPP). J Vis Exp. 2015: e52509. doi:10.3791/52509.
  • [31]Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? Am J Physiol Cell Physiol. 2014; 306:C3-18.
  • [32]Peden AA, Schonteich E, Chun J, Junutula JR, Scheller RH, Prekeris R. The RCP-Rab11 complex regulates endocytic protein sorting. Mol Biol Cell. 2004; 15:3530-41.
  • [33]Hopkins CR, Trowbridge IS. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol. 1983; 97:508-21.
  • [34]Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell. 1984; 37:789-800.
  • [35]Nishimura N, Balch WE. A di-acidic signal required for selective export from the endoplasmic reticulum. Science. 1997; 277:556-8.
  • [36]Nishimura N, Bannykh S, Slabough S, Matteson J, Altschuler Y, Hahn K et al.. A di-acidic (DXE) code directs concentration of cargo during export from the endoplasmic reticulum. J Biol Chem. 1999; 274:15937-46.
  • [37]Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN et al.. Role of ER export signals in controlling surface potassium channel numbers. Science. 2001; 291:316-9.
  • [38]Sieben C, Mikosch M, Brandizzi F, Homann U. Interaction of the K(+) channel KAT1 with the coat protein complex II coat component Sec24 on a di-acidic acidic endoplasmic reticulum export motif. Plant J. 2008; 56:997-1006.
  • [39]Spear JM, Koborssy DA, Schwartz AB, Johnson AJ, Audhya A, Fadool DA et al.. Kv1.3 contains an alternative C-terminal ER exit motif and is recruited into COPII vesicles by Sec24a. BMC Biochem. 2015; 16:16. BioMed Central Full Text
  • [40]Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S et al.. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J. Cell Biol. 2004; 167:65-74.
  • [41]Nufer O, Guldbrandsen S, Degen M, Kappeler F, Paccaud JP, Tani K et al.. Role of cytoplasmic C-terminal amino acids of membrane proteins in ER export. J Cell Sci. 2002; 115:619-28.
  • [42]Gillingham AK, Pfeifer AC, Munro S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell. 2002; 13:3761-74.
  • [43]Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F. Identification and characterization of AtCASP, a plant transmembrane Golgi matrix protein. Plant Mol Biol. 2005; 58:109-22.
  • [44]Hirst J, Borner GH, Harbour M, Robinson MS. The aftiphilin/p200/gamma-synergin complex. Mol Biol Cell. 2005; 16:2554-65.
  • [45]Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, et al. (2015) Next-Generation Sequencing of Pulmonary Sarcomatoid Carcinoma Reveals High Frequency of Actionable MET Gene Mutations. J Clin Oncol. Epub ahead of print.
  • [46]Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T et al.. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012; 22:2109-19.
  文献评价指标  
  下载次数:87次 浏览次数:48次