BMC Musculoskeletal Disorders | |
Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition | |
Caroline D Hoemann3  William D Stanish5  Janet Henderson1  Alberto Carli1  Thomas D Smith3  Adam Harris3  Gaoping Chen3  Jun Sun2  Jessica Guzmán-Morales3  Charles-Hubert Lafantaisie-Favreau4  | |
[1] The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montréal, QC, H3G 1A4, Canada;Current address: Comparative Orthopaedic Research Lab, Department of Clinical Studies, University of Guelph, 50 McGilvray, Lane Guelph, ON, N1G 2W1, Canada;Department of Chemical Engineering, École Polytechnique, C.P. 6079 succ. Centre-Ville, Montréal, QC, H3C 3A7, Canada;Institute of Biomedical Engineering, École Polytechnique, C.P. 6079 succ. Centre-Ville, Montréal, QC, H3C 3A7, Canada;Orthopaedic and Sport Medicine Clinic of Nova Scotia, Dalhousie University, 5595 Fenwick St., Suite 311, Halifax, NS, B3H 4M2, Canada | |
关键词: Micro-computed tomography; Mesenchymal stromal cell; Bone remodeling; Marrow stimulation; Collagen; Neutrophil; Osteoclast; Chitosan; Bone marrow; Cartilage repair; | |
Others : 1134163 DOI : 10.1186/1471-2474-14-27 |
|
received in 2012-07-04, accepted in 2012-12-23, 发布年份 2013 | |
【 摘 要 】
Background
In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls.
Methods
Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair.
Results
All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue.
Conclusions
Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair.
【 授权许可】
2013 Lafantaisie-Favreau et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150305092859375.pdf | 3144KB | download | |
Figure 12. | 48KB | Image | download |
Figure 11. | 171KB | Image | download |
Figure 10. | 159KB | Image | download |
Figure 9. | 48KB | Image | download |
Figure 8. | 117KB | Image | download |
Figure 7. | 122KB | Image | download |
Figure 6. | 224KB | Image | download |
Figure 5. | 45KB | Image | download |
Figure 4. | 167KB | Image | download |
Figure 3. | 140KB | Image | download |
Figure 2. | 145KB | Image | download |
Figure 1. | 154KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
【 参考文献 】
- [1]Breinan HA, Martin SD, Hsu HP, Spector M: Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 2000, 18:781-789.
- [2]Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O: A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007, 89:2105-2112.
- [3]Toyokawa N, Fujioka H, Kokubu T, Nagura I, Inui A, Sakata R, Satake M, Kaneko H, Kurosaka M: Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy 2010, 26:375-383.
- [4]Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T: Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 2009, 25:810-814.
- [5]Barber FA, Dockery WD: A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy 2011, 27:60-64.
- [6]Streitparth F, Schottle P, Schlichting K, Schell H, Fischbach F, Denecke T, Duda GN, Schroder RJ: Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation. Acta Radiol 2009, 50:765-774.
- [7]Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD: Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil 2005, 13:318-329.
- [8]Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD: Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005, 87:2671-2686.
- [9]Chevrier A, Hoemann CD, Sun J, Buschmann MD: Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthr Cartil 2007, 15:316-327.
- [10]Chen G, Sun J, Lascau-Coman V, Chevrier A, Marchand C, Hoemann CD: Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration. Cartilage 2011, 2:173-185.
- [11]Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD: Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil 2007, 15:78-89.
- [12]Chevrier A, Hoemann CD, Sun J, Buschmann MD: Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthr Cartil 2011, 19:136-144.
- [13]Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N: Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 2006, 22:1180-1186.
- [14]Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG: The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005, 87:1911-1920.
- [15]Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD: Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009, 27:1432-1438.
- [16]Ma O, Lavertu M, Sun J, Nguyen S, Buschmann MD, Winnik FM, Hoemann CD: Precise derivatization of structurally distinct chitosans with rhodamine B isothiocyanate. Carbohydr Polym 2008, 72:616-624.
- [17]Lavertu M, Methot S, Tran-Khanh N, Buschmann MD: High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006, 27:4815-4824.
- [18]Allan GG, Peyron M: Molecular weight manipulation of chitosan. I: Kinetics of depolymerization by nitrous acid. Carbohydr Res 1995, 277:257-272.
- [19]Nguyen S, Winnik FM, Buschmann MD: Improved reproducibility in the determination of the molecular weight of chitosan by analytical size exclusion chromatography. Carbohydr Polym 2009, 75:528-533.
- [20]Chevrier A, Rossomacha E, Buschmann MD, Hoemann CD: Optimization of histoprocessing methods to detect glycosaminoglycan, collagen type II, and collagen type I in decalcified rabbit osteochondral sections. J Histotechnology 2005, 28:165-175.
- [21]Marchand C, Rivard GE, Sun J, Hoemann CD: Solidification mechanisms of chitosan-glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil 2009, 17:953-960.
- [22]Bell AD, Lascau-Coman V, Sun J, Chen G, Lowerison MW, Hurtig MB, Hoemann CD: Bone-induced chondroinduction in sheep jamshidi biopsy defects with and without treatment by Subchondral Chitosan-Blood Implant: 1-day, 3-week, and 3-month repair. Cartilage 2012. e-pub ahead of print
- [23]Marchand C, Chen H, Buschmann MD, Hoemann CD: Standardized three-dimensional volumes of interest with adapted surfaces for more precise subchondral bone analyses by micro-computed tomography. Tissue Eng Part C Methods 2011, 17:475-484.
- [24]Frisbie DD, Cross MW, McIlwraith CW: A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 2006, 19:142-146.
- [25]Simard P, Galarneau H, Marois S, Rusu D, Hoemann CD, Poubelle PE, El-Gabalawy H, Fernandes MJ: Neutrophils exhibit distinct phenotypes toward chitosans with different degrees of deacetylation: implications for cartilage repair. Arthritis Res Ther 2009, 11:R74. BioMed Central Full Text
- [26]Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJ, Poubelle PE: Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med 2010, 38:1845-1856.
- [27]Sakata R, Kokubu T, Nagura I, Toyokawa N, Inui A, Fujioka H, Kurosaka M: Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold. J Orthop Res 2012, 30:252-259.
- [28]Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J: The cartilage-bone interface. J Knee Surg 2012, 25:85-97.
- [29]Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S: Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010, 5:e9539.
- [30]Jonsson H, Allen P, Peng SL: Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis. Nat Med 2005, 11:666-671.
- [31]de Cathelineau AM, Henson PM: The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 2003, 39:105-117.
- [32]Onishi H, Machida Y: Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 1999, 20:175-182.
- [33]Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101:890-898.
- [34]Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002, 109:41-50.
- [35]Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN: Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther 2006, 18:55-62.
- [36]Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997, 390:350-351.
- [37]Guzman-Morales J, Lafantaisie-Favreau C-H, Sun J, Rivard GE, Hoemann CD: Analysis of the mid-term effects of chitosan-NaCl/blood pre-solidified implants in an in vivo osteochondral repair model. In 9th World Congress of the International Cartilage Repair Society. Sitges, Spain: Cartilage; 2010:74S-150S. 1
- [38]Boyce BF, Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008, 473:139-146.
- [39]Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K: NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 2007, 282:18245-18253.
- [40]Chakravarti A, Raquil MA, Tessier P, Poubelle PE: Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 2009, 114:1633-1644.
- [41]Breuil V, Schmid-Antomarchi H, Schmid-Alliana A, Rezzonico R, Euller-Ziegler L, Rossi B: The receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is a new chemotactic factor for human monocytes. FASEB J 2003, 17:1751-1753.
- [42]Mosheimer BA, Kaneider NC, Feistritzer C, Sturn DH, Wiedermann CJ: Expression and function of RANK in human monocyte chemotaxis. Arthritis Rheum 2004, 50:2309-2316.
- [43]Yamashiro S, Kamohara H, Yoshimura T: MCP-1 is selectively expressed in the late phase by cytokine-stimulated human neutrophils: TNF-alpha plays a role in maximal MCP-1 mRNA expression. J Leukoc Biol 1999, 65:671-679.
- [44]Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR: Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 2001, 12:932-940.
- [45]Berger SP, Seelen MA, Hiemstra PS, Gerritsma JS, Heemskerk E, van der Woude FJ, Daha MR: Proteinase 3, the major autoantigen of Wegener’s granulomatosis, enhances IL-8 production by endothelial cells in vitro. J Am Soc Nephrol 1996, 7:694-701.
- [46]Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J: Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 2007, 67:3646-3653.
- [47]Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, Kasai K: IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis 2011, 17:489-498.
- [48]Tanaka T, Terada M, Ariyoshi K, Morimoto K: Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Rac1 activation. Biochem Biophys Res Commun 2010, 399:677-682.
- [49]Cheung WY, Liu C, Tonelli-Zasarsky RM, Simmons CA, You L: Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J Orthop Res 2011, 29:523-530.
- [50]Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD: Osteoclasts are important for bone angiogenesis. Blood 2010, 115:140-149.
- [51]Kreja L, Brenner RE, Tautzenberger A, Liedert A, Friemert B, Ehrnthaller C, Huber-Lang M, Ignatius A: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells. J Cell Biochem 2010, 109:347-355.
- [52]Kasaai MR, Arul J, Charlet G: Intrinsic viscosity–molecular weight relationship for chitosan. J Polym Sci Part B: Polym Phys 2000, 38:2591-2598.
- [53]Philippart P, Brasseur M, Hoyaux D, Pochet R: Human recombinant tissue factor, platelet-rich plasma, and tetracycline induce a high-quality human bone graft: a 5-year survey. Int J Oral Maxillofac Implants 2003, 18:411-416.
- [54]Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD: Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 2011, 29:1178-1184.
- [55]Marchand C, Chen G, Tran-Khanh N, Sun J, Chen H, Buschmann MD, Hoemann CD: Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A 2012, 18:508-519.