期刊论文详细信息
BMC Musculoskeletal Disorders
Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition
Caroline D Hoemann3  William D Stanish5  Janet Henderson1  Alberto Carli1  Thomas D Smith3  Adam Harris3  Gaoping Chen3  Jun Sun2  Jessica Guzmán-Morales3  Charles-Hubert Lafantaisie-Favreau4 
[1]The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Ave, Montréal, QC, H3G 1A4, Canada
[2]Current address: Comparative Orthopaedic Research Lab, Department of Clinical Studies, University of Guelph, 50 McGilvray, Lane Guelph, ON, N1G 2W1, Canada
[3]Department of Chemical Engineering, École Polytechnique, C.P. 6079 succ. Centre-Ville, Montréal, QC, H3C 3A7, Canada
[4]Institute of Biomedical Engineering, École Polytechnique, C.P. 6079 succ. Centre-Ville, Montréal, QC, H3C 3A7, Canada
[5]Orthopaedic and Sport Medicine Clinic of Nova Scotia, Dalhousie University, 5595 Fenwick St., Suite 311, Halifax, NS, B3H 4M2, Canada
关键词: Micro-computed tomography;    Mesenchymal stromal cell;    Bone remodeling;    Marrow stimulation;    Collagen;    Neutrophil;    Osteoclast;    Chitosan;    Bone marrow;    Cartilage repair;   
Others  :  1134163
DOI  :  10.1186/1471-2474-14-27
 received in 2012-07-04, accepted in 2012-12-23,  发布年份 2013
PDF
【 摘 要 】

Background

In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls.

Methods

Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair.

Results

All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue.

Conclusions

Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair.

【 授权许可】

   
2013 Lafantaisie-Favreau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305092859375.pdf 3144KB PDF download
Figure 12. 48KB Image download
Figure 11. 171KB Image download
Figure 10. 159KB Image download
Figure 9. 48KB Image download
Figure 8. 117KB Image download
Figure 7. 122KB Image download
Figure 6. 224KB Image download
20140723065743937.pdf 704KB PDF download
Figure 4. 167KB Image download
Figure 3. 140KB Image download
Figure 2. 145KB Image download
Figure 1. 154KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Breinan HA, Martin SD, Hsu HP, Spector M: Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 2000, 18:781-789.
  • [2]Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O: A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007, 89:2105-2112.
  • [3]Toyokawa N, Fujioka H, Kokubu T, Nagura I, Inui A, Sakata R, Satake M, Kaneko H, Kurosaka M: Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy 2010, 26:375-383.
  • [4]Carmont MR, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T: Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy 2009, 25:810-814.
  • [5]Barber FA, Dockery WD: A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy 2011, 27:60-64.
  • [6]Streitparth F, Schottle P, Schlichting K, Schell H, Fischbach F, Denecke T, Duda GN, Schroder RJ: Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation. Acta Radiol 2009, 50:765-774.
  • [7]Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD: Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil 2005, 13:318-329.
  • [8]Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD: Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005, 87:2671-2686.
  • [9]Chevrier A, Hoemann CD, Sun J, Buschmann MD: Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthr Cartil 2007, 15:316-327.
  • [10]Chen G, Sun J, Lascau-Coman V, Chevrier A, Marchand C, Hoemann CD: Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration. Cartilage 2011, 2:173-185.
  • [11]Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD: Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil 2007, 15:78-89.
  • [12]Chevrier A, Hoemann CD, Sun J, Buschmann MD: Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthr Cartil 2011, 19:136-144.
  • [13]Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N: Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 2006, 22:1180-1186.
  • [14]Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG: The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005, 87:1911-1920.
  • [15]Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD: Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009, 27:1432-1438.
  • [16]Ma O, Lavertu M, Sun J, Nguyen S, Buschmann MD, Winnik FM, Hoemann CD: Precise derivatization of structurally distinct chitosans with rhodamine B isothiocyanate. Carbohydr Polym 2008, 72:616-624.
  • [17]Lavertu M, Methot S, Tran-Khanh N, Buschmann MD: High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 2006, 27:4815-4824.
  • [18]Allan GG, Peyron M: Molecular weight manipulation of chitosan. I: Kinetics of depolymerization by nitrous acid. Carbohydr Res 1995, 277:257-272.
  • [19]Nguyen S, Winnik FM, Buschmann MD: Improved reproducibility in the determination of the molecular weight of chitosan by analytical size exclusion chromatography. Carbohydr Polym 2009, 75:528-533.
  • [20]Chevrier A, Rossomacha E, Buschmann MD, Hoemann CD: Optimization of histoprocessing methods to detect glycosaminoglycan, collagen type II, and collagen type I in decalcified rabbit osteochondral sections. J Histotechnology 2005, 28:165-175.
  • [21]Marchand C, Rivard GE, Sun J, Hoemann CD: Solidification mechanisms of chitosan-glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil 2009, 17:953-960.
  • [22]Bell AD, Lascau-Coman V, Sun J, Chen G, Lowerison MW, Hurtig MB, Hoemann CD: Bone-induced chondroinduction in sheep jamshidi biopsy defects with and without treatment by Subchondral Chitosan-Blood Implant: 1-day, 3-week, and 3-month repair. Cartilage 2012. e-pub ahead of print
  • [23]Marchand C, Chen H, Buschmann MD, Hoemann CD: Standardized three-dimensional volumes of interest with adapted surfaces for more precise subchondral bone analyses by micro-computed tomography. Tissue Eng Part C Methods 2011, 17:475-484.
  • [24]Frisbie DD, Cross MW, McIlwraith CW: A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol 2006, 19:142-146.
  • [25]Simard P, Galarneau H, Marois S, Rusu D, Hoemann CD, Poubelle PE, El-Gabalawy H, Fernandes MJ: Neutrophils exhibit distinct phenotypes toward chitosans with different degrees of deacetylation: implications for cartilage repair. Arthritis Res Ther 2009, 11:R74. BioMed Central Full Text
  • [26]Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJ, Poubelle PE: Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages. Am J Sports Med 2010, 38:1845-1856.
  • [27]Sakata R, Kokubu T, Nagura I, Toyokawa N, Inui A, Fujioka H, Kurosaka M: Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold. J Orthop Res 2012, 30:252-259.
  • [28]Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J: The cartilage-bone interface. J Knee Surg 2012, 25:85-97.
  • [29]Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S: Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010, 5:e9539.
  • [30]Jonsson H, Allen P, Peng SL: Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis. Nat Med 2005, 11:666-671.
  • [31]de Cathelineau AM, Henson PM: The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 2003, 39:105-117.
  • [32]Onishi H, Machida Y: Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 1999, 20:175-182.
  • [33]Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101:890-898.
  • [34]Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002, 109:41-50.
  • [35]Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN: Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther 2006, 18:55-62.
  • [36]Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997, 390:350-351.
  • [37]Guzman-Morales J, Lafantaisie-Favreau C-H, Sun J, Rivard GE, Hoemann CD: Analysis of the mid-term effects of chitosan-NaCl/blood pre-solidified implants in an in vivo osteochondral repair model. In 9th World Congress of the International Cartilage Repair Society. Sitges, Spain: Cartilage; 2010:74S-150S. 1
  • [38]Boyce BF, Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008, 473:139-146.
  • [39]Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K: NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 2007, 282:18245-18253.
  • [40]Chakravarti A, Raquil MA, Tessier P, Poubelle PE: Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 2009, 114:1633-1644.
  • [41]Breuil V, Schmid-Antomarchi H, Schmid-Alliana A, Rezzonico R, Euller-Ziegler L, Rossi B: The receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) is a new chemotactic factor for human monocytes. FASEB J 2003, 17:1751-1753.
  • [42]Mosheimer BA, Kaneider NC, Feistritzer C, Sturn DH, Wiedermann CJ: Expression and function of RANK in human monocyte chemotaxis. Arthritis Rheum 2004, 50:2309-2316.
  • [43]Yamashiro S, Kamohara H, Yoshimura T: MCP-1 is selectively expressed in the late phase by cytokine-stimulated human neutrophils: TNF-alpha plays a role in maximal MCP-1 mRNA expression. J Leukoc Biol 1999, 65:671-679.
  • [44]Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR: Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol 2001, 12:932-940.
  • [45]Berger SP, Seelen MA, Hiemstra PS, Gerritsma JS, Heemskerk E, van der Woude FJ, Daha MR: Proteinase 3, the major autoantigen of Wegener’s granulomatosis, enhances IL-8 production by endothelial cells in vitro. J Am Soc Nephrol 1996, 7:694-701.
  • [46]Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J: Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 2007, 67:3646-3653.
  • [47]Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, Kasai K: IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis 2011, 17:489-498.
  • [48]Tanaka T, Terada M, Ariyoshi K, Morimoto K: Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Rac1 activation. Biochem Biophys Res Commun 2010, 399:677-682.
  • [49]Cheung WY, Liu C, Tonelli-Zasarsky RM, Simmons CA, You L: Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J Orthop Res 2011, 29:523-530.
  • [50]Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD: Osteoclasts are important for bone angiogenesis. Blood 2010, 115:140-149.
  • [51]Kreja L, Brenner RE, Tautzenberger A, Liedert A, Friemert B, Ehrnthaller C, Huber-Lang M, Ignatius A: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells. J Cell Biochem 2010, 109:347-355.
  • [52]Kasaai MR, Arul J, Charlet G: Intrinsic viscosity–molecular weight relationship for chitosan. J Polym Sci Part B: Polym Phys 2000, 38:2591-2598.
  • [53]Philippart P, Brasseur M, Hoyaux D, Pochet R: Human recombinant tissue factor, platelet-rich plasma, and tetracycline induce a high-quality human bone graft: a 5-year survey. Int J Oral Maxillofac Implants 2003, 18:411-416.
  • [54]Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD: Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 2011, 29:1178-1184.
  • [55]Marchand C, Chen G, Tran-Khanh N, Sun J, Chen H, Buschmann MD, Hoemann CD: Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A 2012, 18:508-519.
  文献评价指标  
  下载次数:27次 浏览次数:13次