期刊论文详细信息
BMC Medical Imaging
Imaging of thyroid tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice
Marco Salvatore2  Arturo Brunetti4  Rosa Pasquinelli1  Gennaro Chiappetta1  Emilia Vergara2  Gennaro Di Maro7  Raffaele Liuzzi5  Giuliana Salvatore3  Adelaide Greco4  Marcello Mancini6 
[1] Functional Genomic Unit, Istituto Nazionale Tumori G. Pascale, Naples, Italy;Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli “Federico II”, Naples, 80131, Italy;Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università degli Studi di Napoli “Parthenope”, Naples, Italy;CEINGE-Biotecnologie Avanzate s.c.a.\r.l., Naples, Italy;Institute of Biostructure and Bioimaging, Italian National Research Council (CNR), Naples, Italy;SDN Foundation IRCCS, Naples, Italy;Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Naples, 80131, Italy
关键词: Contrast agent;    Cancer;    High resolution ultrasound;    Transgenic;    Thyroid;   
Others  :  1090592
DOI  :  10.1186/1471-2342-13-31
 received in 2013-04-08, accepted in 2013-09-06,  发布年份 2013
PDF
【 摘 要 】

Background

To evaluate whether Contrast Enhanced Ultrasund (CEUS) with microbubbles (MBs) targeted to VEGFR-2 is able to characterize in vivo the VEGFR-2 expression in the tumor vasculature of a mouse model of thyroid cancer (Tg-TRK-T1).

Methods

Animal protocol was approved by Institutional committee on Laboratory Animal Care. Contrast-enhanced ultrasound imaging with MBs targeted with an anti-VEGFR-2 monoclonal antibody (UCAVEGFR-2) and isotype control antibody (UCAIgG) was performed in 7 mice with thyroid carcinoma, 5 mice with hyperplasia or benign thyroid nodules and 4 mice with normal thyroid. After ultrasonography, the tumor samples were harvested for histological examination and VEGFR-2 expression was tested by immunohistochemistry. Data were reported as median and range. Paired non parametric Wilcoxon’s test and ANOVA of Kruskal-Wallis were used. The correlation between the contrast signal and the VEGFR-2 expression was assessed by the Spearman coefficient.

Results

The Video intensity difference (VID) caused by backscatter of the retained UCAVEGFR-2 was significantly higher in mice harboring thyroid tumors compared to mice with normal thyroids (P < 0.01) and to mice harboring benign nodules (P < 0.01). No statistically significant differences of VID were observed in the group of mice carrying benign nodules compared to mice with normal thyroids. Moreover in thyroid tumors VID of retained VEGFR-2-targeted UCA was significantly higher than that of control UCAIgG (P <0.05). Results of immunohistochemical analysis confirmed VEGFR-2 overexpression. The magnitude of the molecular ultrasonographic signal from a VEGFR-2-targeted UCA retained by tissue correlates with VEGFR-2 expression determined by immunohistochemistry (rho 0.793, P=0.0003).

Conclusions

We demonstrated that CEUS with UCAVEGFR-2 might be used for in vivo non invasive detection and quantification of VEGFR-2 expression in thyroid cancer in mice, and to differentiate benign from malignant thyroid nodules.

【 授权许可】

   
2013 Mancini et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128161952979.pdf 1411KB PDF download
Figure 4. 72KB Image download
Figure 3. 284KB Image download
Figure 2. 111KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Klener P: Angiogenesis as part of the tumor “ecosystem” and possibilities to influence it. Klin Onkol 2010, 23(1):14-20.
  • [2]Pandya NM, Dhalla NS, Santani DD: Angiogenesis–a new target for future therapy. Vascul Pharmacol 2006, 44(5):265-274.
  • [3]Sato Y: Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int J Clin Oncol 2003, 8(4):200-206.
  • [4]Sitohy B, Nagy JA, Dvorak HF: Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 2012, 72(8):1909-1914.
  • [5]Kojic KL, Kojic SL, Wiseman SM: Differentiated thyroid cancers: a comprehensive review of novel targeted therapies. Expert Rev Anticancer Ther 2012, 12(3):345-357.
  • [6]Bertolini F, Marighetti P, Martin-Padura I, Mancuso P, Hu-Lowe DD, Shaked Y, D’Onofrio A: Anti-VEGF and beyond: shaping a new generation of anti-angiogenic therapies for cancer. Drug Discov Today 2011, 16(23–24):1052-1060.
  • [7]Turner HE, Harris AL, Melmed S, Wass JA: Angiogenesis in endocrine tumors. Endocr Rev 2003, 24(5):600-603.
  • [8]Warram JM, Sorace AG, Saini R, Umphrey HR, Zinn KR, Hoyt K: A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med 2011, 30:921-931.
  • [9]Ramsden JD, Buchanan MA, Egginton S, Watkinson JC, Mautner V, Eggo MC: Complete inhibition of goiter in mice requires combined gene therapy modification of angiopoietin, vascular endothelial growth factor, and fibroblast growth factor signaling. Endocrinology 2005, 146(7):2895-2902.
  • [10]Nagura S, Katoh R, Miyagi E, Shibuya M, Kawaoi A: Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves disease possibly correlated with increased vascular density. Hum Pathol 2001, 32(1):10-17.
  • [11]Nikiforov YE, Nikiforova MN: Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011, 7(10):569-580.
  • [12]Greco A, Miranda C, Pierotti MA: Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Molecular and cellular endocrinology 2010, 321:44-49.
  • [13]Russell JP, Powell DJ, Cunnane M, Greco A, Portella G, Santoro M, Fusco A, Rothstein JL: The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene 2000, 19:5729-5735.
  • [14]Kim CS, Zhu X: Lessons from mouse models of thyroid cancer. Thyroid 2009, 19:1317-1331.
  • [15]Klein M, Catargi B: VEGF in physiological process and thyroid disease. Ann Endocrinol 2007, 68(6):438-448.
  • [16]Góth MI, Hubina E, Raptis S, Nagy GM, Tóth BE: Physiological and pathological angiogenesis in the endocrine system. Microsc Res Tech 2003, 60(1):98-106.
  • [17]Salajegheh A, Smith RA, Kasem K, Gopalan V, Nassiri MR, William R, Lam AK: Single nucleotide polymorphisms and mRNA expression of VEGF-A in papillary thyroid carcinoma: potential markers for aggressive phenotypes. Eur J Surg Oncol 2011, 37(1):93-99.
  • [18]Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA: Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 2000, 85(3):1159-1162.
  • [19]Risau W: Angiogenic growth factors. Prog Growth Factor Res 1990, 2(1):71-79.
  • [20]Ellegala DB, Leong-Poi H, Carpenter JE, Kaul S, Shaffrey ME, Sklenar J, Lindner JR: Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003, 108:336-341.
  • [21]Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA: Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007, 13:323-330.
  • [22]Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, Chen IY, Chen X, Gambhir SS: US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008, 2:508-518.
  • [23]Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC: Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level ofVEGFR2 expression in an in vivo breast cancer model. J Ultrasound Med 2008, 27(6):855-866.
  • [24]Delorme S, Krix M: Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging 2006, 6:148-152.
  • [25]Klasa-Mazurkiewicz D, Jarząb M, Milczek T, Lipińska B, Emerich J: Clinical significance of VEGFR-2 and VEGFR-3 expression in ovarian cancer patients. Pol J Pathol 2011, 62(1):31-40.
  • [26]Büchler P, Reber HA, Büchler MW, Friess H, Hines OJ: VEGF-RII influences the prognosis of pancreatic cancer. Ann Surg 2002, 236(6):738-749.
  • [27]Office of Animal Care and Use (OACU) of the National Institutes of Health (NIH): Animal Research Advisory Committee (ARAC). http://oacu.od.nih.gov/ARAC/ webcite
  • [28]Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA: An ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010, 102:1555-1577.
  • [29]Zhou YQ, Foster FS, Qu DW, Zhang M, Harasiewicz KA, Adamson SL: Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics 2002, 10(2):113-126.
  • [30]Greco A, Mancini M, Gargiulo S, Gramanzini M, Claudio PP, Brunetti A, Salvatore M: Ultrasound biomicroscopy in small animal research: applications in molecular and pre-clinical imaging. Journal of Biomedicine and Biotechnology 2012, Article ID 519238:14.
  • [31]The Australian and New Zealand Council for the Care of Animals in Research and Teaching Ltd (ANZCCART) Australia: The University of Adelaide; http://www.adelaide.edu.au/ANZCCART/publications/ webcite
  • [32]Mancini M, Vergara E, Salvatore G, Greco A, Troncone G, Affuso A, Liuzzi R, Salerno P, Scotto di Santolo M, Santoro M, Brunetti A, Salvatore M: Morphological ultrasound micro-imaging of thyroid in living mice. Endocrinology 2009, 150(10):4810-4815.
  • [33]Jokinen MP, Botts S: WHO International Agency for Researchon Cancer. In Pathology of tumours in laboratory animals: tumours of the mouse Vol 2. 2nd edition. Edited by Turusob VS, Mohr U. Lyon, France: IARC Scientific Publication; 1994:565-594.
  • [34]Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, Woenne EC, Jenne JW, Maurer M, Kauffmann GW, Semmler W, Kiessling F: Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 2008, 7(1):101-109.
  • [35]Hodivala-Dilke K: Alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 2008, 20(5):514-519.
  • [36]Ferrara N: Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004, 25(4):581-611.
  • [37]ten Dijke P, Goumans MJ, Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008, 11(1):79-89.
  • [38]Sledge GW Jr, Rugo HS, Burstein HJ: The role of angiogenesis inhibition in the treatment of breast cancer. Clin Adv Hematol Oncol 2006, 4(10 Suppl 21):1-10.
  • [39]Khosravi Shahi P, Soria Lovelle A, Pérez Manga G: Tumoral angiogenesis and breast cancer. Clin Transl Oncol 2009, 11(3):138-142.
  • [40]Gómez-Raposo C, Mendiola M, Barriuso J, Casado E, Hardisson D, Redondo A: Angiogenesis and ovarian cancer. Clin Transl Oncol 2009, 11(9):564-571.
  • [41]Bednarek W, Mazurek M, Cwiklińska A, Barczyński B: Expression of selected angiogenesis markers and modulators in pre-, peri- and postmenopausal women with ovarian cancer. Ginekol Pol 2009, 80(2):93-98.
  • [42]Saif MW: Primary pancreatic lymphomas. JOP 2006, 7(3):262-273.
  • [43]Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005, 23(5):1011-1027.
  • [44]Lindner JR: Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004, 3(6):527-532.
  • [45]Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS: Molecular imaging in drug development. Nat Rev Drug Discov 2008, 7(7):591-607.
  • [46]Pysz MA, Foygel K, Rosenberg J, Gambhir SS, Schneider M, Willmann JK: Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 2010, 256(2):519-527.
  • [47]Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS: Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 2010, 51(3):433-440.
  • [48]Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S: Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 2000, 102(22):2745-2750.
  • [49]Sorace AG, Saini R, Mahoney M, Hoyt K: Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. J Ultrasound Med 2012, 31(10):1543-1550.
  • [50]Willmann JK, Cheng Z, Davis C: Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 2008, 249:212-219.
  • [51]Klibanov AL, Rasche PT, Hughes MS, Wojdyla JK, Galen KP, Wible JH Jr, Brandenburger GH: Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol 2004, 39(3):187-195.
  • [52]Lucidarme O, Kono Y, Corbeil J, Choi SH, Golmard JL, Varner J, Mattrey RF: Angiogenesis: noninvasive quantitative assessment with contrast-enhanced functional US in murine model. Radiology 2006, 239(3):730-739.
  文献评价指标  
  下载次数:105次 浏览次数:37次