期刊论文详细信息
BMC Genomics
Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus
Steven YC Tong3  D Ashley Robinson4  Stephen D Bentley1  Julian Parkhill1  Matthew TG Holden5  Paul Coupland1  Anand Manoharan2  Derek S Sarovich3  Simon R Harris1  Patiyan Andersson3  Eike J Steinig3 
[1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK;Pushpagiri Research Center, Pushpagiri Institute of Medical Sciences and Research Center, Thiruvalla, India;Menzies School of Health Research, Darwin, Northern Territory, Australia;Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA;School of Medicine, University of St. Andrews, St. Andrews, UK
关键词: India;    DAR4145;    Complete genome;    Mobile genetic elements;    Antibiotic resistance;    ST772;    MRSA;    Staphylococcus aureus;   
Others  :  1203935
DOI  :  10.1186/s12864-015-1599-9
 received in 2015-01-22, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.

Results

Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V from Australia, Malaysia and India. We discovered numerous and redundant resistance genes associated with mobile genetic elements (MGEs) and known core genome mutations that explain the highly antibiotic resistant phenotype of DAR4145. Staphylococcal toxins and superantigens, including the leukotoxin Panton-Valentinin Leukocidin, were predominantly associated with genomic islands and the phage φ-IND772PVL. Some of these mobile resistance and virulence factors were variably present in other strains of the ST772-MRSA-V lineage.

Conclusions

The genomic characteristics presented here emphasize the contribution of MGEs to the emergence of multidrug-resistant and highly virulent strains of community-associated MRSA. Antibiotic resistance was further augmented by chromosomal mutations and redundancy of resistance genes. The complete genome of DAR4145 provides a valuable resource for future investigations into the global dissemination and phylogeography of ST772-MRSA-V.

【 授权许可】

   
2015 Steinig et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523030445358.pdf 1471KB PDF download
Figure 1. 140KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H et al.. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012; 39:273-82.
  • [2]Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol. 2012; 15:588-95.
  • [3]Seybold U, Kourbatova EV, Johnson JG, Halvosa SJ, Wang YF, King MD et al.. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis. 2006; 42:647-56.
  • [4]Popovich KJ, Weinstein RA, Hota B. Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis. 2008; 46:787-94.
  • [5]Otter JA, French GL. Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J Hosp Infect. 2011; 79:189-93.
  • [6]Ghebremedhin B, Olugbosi MO, Raji AM, Layer F, Bakare RA, König B et al.. Emergence of a community-associated methicillin-resistant Staphylococcus aureus strain with a unique resistance profile in Southwest Nigeria. J Clin Microbiol. 2009; 47:2975-80.
  • [7]D’Souza N, Rodrigues C, Mehta A. Molecular characterization of methicillin-resistant Staphylococcus aureus with emergence of epidemic clones of sequence type (ST) 22 and ST 772 in Mumbai, India. J Clin Microbiol. 2010; 48:1806-11.
  • [8]Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M et al.. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One. 2011; 6: Article ID e17936
  • [9]Shambat S, Nadig S, Prabhakara S, Bes M, Etienne J, Arakere G. Clonal complexes and virulence factors of Staphylococcus aureus from several cities in India. BMC Microbiol. 2012; 12:64. BioMed Central Full Text
  • [10]Tong SYC, Kearns AM. Community-associated MRSA from the Indian subcontinent. Lancet Infect Dis. 2013; 13:734-5.
  • [11]Falagas ME, Karageorgopoulos DE, Leptidis J, Korbila IP. MRSA in Africa: filling the global map of antimicrobial resistance. PLoS One. 2013; 8: Article ID e68024
  • [12]Goering RV, Shawar RM, Scangarella NE, O’Hara FP, Amrine-Madsen H, West JM et al.. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol. 2008; 46:2842-7.
  • [13]Afroz S, Kobayashi N, Nagashima S, Alam MM, Hossain ABMB, Rahman MA et al.. Genetic Characterization of Staphylococcus aureus Isolates Carrying Panton-Valentine Leukocidin Genes in Bangladesh. Jpn J Infect Dis. 2008; 61:393-6.
  • [14]Nadig S, Velusamy N, Lalitha P, Kar S, Sharma S, Arakere G. Staphylococcus aureus eye infections in two Indian hospitals: emergence of ST772 as a major clone. Clin Ophthalmol. 2012; 6:165-73.
  • [15]Brennan GI, Shore AC, Corcoran S, Tecklenborg S, Coleman DC, O’Connell B. Emergence of hospital- and community-associated panton-valentine leukocidin-positive methicillin-resistant Staphylococcus aureus genotype ST772-MRSA-V in Ireland and detailed investigation of an ST772-MRSA-V cluster in a neonatal intensive care unit. J Clin Microbiol. 2012; 50:841-7.
  • [16]Ellington MJ, Ganner M, Warner M, Cookson BD, Kearns AM. Polyclonal multiply antibiotic-resistant methicillin-resistant Staphylococcus aureus with Panton-Valentine leucocidin in England. J Antimicrob Chemother. 2010; 65:46-50.
  • [17]Coombs GW, Monecke S, Pearson JC, Tan H, Chew Y-K, Wilson L et al.. Evolution and diversity of community-associated methicillin-resistant Staphylococcus aureus in a geographical region. BMC Microbiol. 2011; 11:215. BioMed Central Full Text
  • [18]Zanger P, Nurjadi D, Schleucher R, Scherbaum H, Wolz C, Kremsner PG et al.. Import and spread of Panton-Valentine Leukocidin-positive Staphylococcus aureus through nasal carriage and skin infections in travelers returning from the tropics and subtropics. Clin Infect Dis. 2012; 54:483-92.
  • [19]Prabhakara S, Khedkar S, Loganathan RM, Chandana S, Gowda M, Arakere G et al.. Draft genome sequence of Staphylococcus aureus 118 (ST772), a major disease clone from India. J Bacteriol. 2012; 194:3727-8.
  • [20]Monecke S, Baier V, Coombs GW, Slickers P, Ziegler A, Ehricht R. Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, “Bengal Bay Clone”. BMC Res Notes. 2013; 6:548. BioMed Central Full Text
  • [21]Prabhakara S, Khedkar S, Shambat SM, Srinivasan R, Basu A, Norrby-Teglund A et al.. Genome sequencing unveils a novel sea enterotoxin-carrying PVL phage in Staphylococcus aureus ST772 from India. PLoS One. 2013; 8: Article ID e60013
  • [22]Balakuntla J, Prabhakara S, Arakere G. Novel rearrangements in the staphylococcal cassette chromosome mec type V elements of Indian ST772 and ST672 methicillin resistant Staphylococcus aureus strains. PLoS One. 2014; 9: Article ID e94293
  • [23]Suhaili Z, Lean S-S, Yahya A, Mohd Desa MN, Ali AM, Yeo CC. Draft Genome Sequence of Methicillin-Resistant Staphylococcus aureus KT/Y21, a Sequence Type 772 (ST772) Strain Isolated from a Pediatric Blood Sample in Terengganu, Malaysia. Genome Announc. 2014; 2:e00271-14.
  • [24]Chakrakodi B, Prabhakara S, Nagaraj S, Etienne J, Arakere G. High Prevalence of Ciprofloxacin Resistance in Community Associated Staphylococcus aureus in a Tertiary Care Indian Hospital. Adv Microbiol. 2014; 04:133-41.
  • [25]Lindsay JA, Holden MTG. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 2004; 12:378-85.
  • [26]Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L et al.. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 2014; 24:688-96.
  • [27]Limmathurotsakul D, Holden MTG, Coupland P, Price EP, Chantratita N, Wuthiekanun V et al.. Microevolution of Burkholderia pseudomallei during an acute infection. J Clin Microbiol. 2014; 52:3418-21.
  • [28]Stegger M, Price LB, Larsen AR, Gillece JD, Waters AE, Skov R et al.. Genome sequence of Staphylococcus aureus strain 11819–97, an ST80-IV European community-acquired methicillin-resistant isolate. J Bacteriol. 2012; 194:1625-6.
  • [29]Altman DR, Sebra R, Hand J, Attie O, Deikus G, Carpini KWD et al.. Transmission of Methicillin-Resistant Staphylococcus aureus via Deceased Donor Liver Transplantation Confirmed by Whole Genome Sequencing. Am J Transplant. 2014; 14:2640-4.
  • [30]Parker D, Narechania A, Sebra R, Deikus G, Larussa S, Ryan C et al.. Genome Sequence of Bacterial Interference Strain Staphylococcus aureus 502A. Genome Announc. 2014; 2:e00284-14.
  • [31]Manoharan A, Zhang L, Poojary A, Bhandarkar L, Koppikar G, Robinson DA. An outbreak of post-partum breast abscesses in Mumbai, India caused by ST22-MRSA-IV: genetic characteristics and epidemiological implications. Epidemiol Infect. 2012; 140:1809-12.
  • [32]Koren S, Phillippy AM. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol. 2015; 23:110-20.
  • [33]Lyon BR, May JW, Skurray RA. Tn4001: a gentamicin and kanamycin resistance transposon in Staphylococcus aureus. Mol Gen Genet. 1984; 193:554-6.
  • [34]Nurjadi D, Olalekan AO, Layer F, Shittu AO, Alabi A, Ghebremedhin B et al.. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J Antimicrob Chemother. 2014; 69:2361-8.
  • [35]Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A et al.. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet. 2002; 359:1819-27.
  • [36]Holden MTG, Lindsay JA, Corton C, Quail MA, Cockfield JD, Pathak S et al.. Genome sequence of a recently emerged, highly transmissible, multi-antibiotic- and antiseptic-resistant variant of methicillin-resistant Staphylococcus aureus, sequence type 239 (TW). J Bacteriol. 2010; 192:888-92.
  • [37]Bergmann R, Sagar V, Nitsche-Schmitz DP, Chhatwal GS. First detection of trimethoprim resistance determinant dfrG in Streptococcus pyogenes clinical isolates in India. Antimicrob Agents Chemother. 2012; 56:5424-5.
  • [38]Bertsch D, Uruty A, Anderegg J, Lacroix C, Perreten V, Meile L. Tn6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn916 element in Listeria monocytogenes. J Antimicrob Chemother. 2013; 68:986-91.
  • [39]Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al.. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012; 67:2640-4.
  • [40]Kennedy AD, Porcella SF, Martens C, Whitney AR, Braughton KR, Chen L et al.. Complete nucleotide sequence analysis of plasmids in strains of Staphylococcus aureus clone USA300 reveals a high level of identity among isolates with closely related core genome sequences. J Clin Microbiol. 2010; 48:4504-11.
  • [41]Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR et al.. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013; 23:653-64.
  • [42]Sabirova JS, Xavier BB, Hernalsteens J-P, De Greve H, Ieven M, Goossens H et al.. Complete Genome Sequences of Two Prolific Biofilm-Forming Staphylococcus aureus Isolates Belonging to USA300 and EMRSA-15 Clonal Lineages. Genome Announc. 2014; 2:e00610-4.
  • [43]Truong-Bolduc QC, Dunman PM, Strahilevitz J, Projan SJ, Hooper DC. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol. 2005; 187:2395-405.
  • [44]Kwak YG, Truong-Bolduc QC, Bin Kim H, Song K-H, Kim ES, Hooper DC. Association of norB overexpression and fluoroquinolone resistance in clinical isolates of Staphylococcus aureus from Korea. J Antimicrob Chemother. 2013; 68:2766-72.
  • [45]Ding Y, Onodera Y, Lee JC, Hooper DC. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol. 2008; 190:7123-9.
  • [46]Truong-Bolduc QC, Villet RA, Estabrooks ZA, Hooper DC. Native efflux pumps contribute resistance to antimicrobials of skin and the ability of Staphylococcus aureus to colonize skin. J Infect Dis. 2014; 209:1485-93.
  • [47]Ferrero L, Cameron B, Crouzet J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1995; 39:1554-8.
  • [48]Yamagishi J, Kojima T, Oyamada Y, Fujimoto K, Hattori H, Nakamura S et al.. Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1996; 40:1157-63.
  • [49]Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S, Lückefahr M et al.. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Chemother. 1998; 42:1249-52.
  • [50]Vickers AA, Potter NJ, Fishwick CWG, Chopra I, O’Neill AJ. Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. J Antimicrob Chemother. 2009; 63:1112-7.
  • [51]Antonio M, McFerran N, Pallen MJ. Mutations Affecting the Rossman Fold of Isoleucyl-tRNA Synthetase Are Correlated with Low-Level Mupirocin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2002; 46:438-42.
  • [52]Noguchi N, Sasatsu M, Kono M. Genetic mapping in Bacillus subtilis 168 of the aadK gene which encodes aminoglycoside 6-adenylyltransferase. FEMS Microbiol Lett. 1993; 114:47-52.
  • [53]Kaneko J, Kamio Y. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci Biotechnol Biochem. 2004; 68:981-1003.
  • [54]Benson MA, Ohneck EA, Ryan C, Alonzo F, Smith H, Narechania A et al.. Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element. Mol Microbiol. 2014; 93:664-81.
  • [55]Kaito C, Saito Y, Ikuo M, Omae Y, Mao H, Nagano G et al.. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog. 2013; 9: Article ID e1003269
  • [56]Robinson DA, Monk AB, Cooper JE, Feil EJ, Enright MC. Evolutionary Genetics of the Accessory Gene Regulator (agr) Locus in Staphylococcus aureus. J Bacteriol. 2005; 187(24):8312-21.
  • [57]Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG et al.. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006; 367:731-9.
  • [58]Chua K, Seemann T, Harrison PF, Davies JK, Coutts SJ, Chen H et al.. Complete genome sequence of Staphylococcus aureus strain JKD6159, a unique Australian clone of ST93-IV community methicillin-resistant Staphylococcus aureus. J Bacteriol. 2010; 192:5556-7.
  • [59]Huang T-W, Chen F-J, Miu W-C, Liao T-L, Lin A-C, Huang I-W et al.. Complete genome sequence of Staphylococcus aureus M013, a pvl-positive, ST59-SCCmec type V strain isolated in Taiwan. J Bacteriol. 2012; 194:1256-7.
  • [60]Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJC, Gorbach SL et al.. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014; 59:e10-52.
  • [61]Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S21. CLSI M100-S21, Wayne, PA; 2011.
  • [62]Otto TD, Sanders M, Berriman M, Newbold C. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics. 2010; 26(14):1704-7.
  • [63]Sarovich D, Price E. SPANDx: a genomics pipeline for comparative analysis of large haploid whole genome re-sequencing datasets. BMC Res Notes. 2014; 7:618. BioMed Central Full Text
  • [64]Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068-9.
  • [65]Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X et al.. BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res. 2005; 33(2):W455-9.
  • [66]Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al.. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008; 9:386. BioMed Central Full Text
  • [67]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA et al.. Artemis: sequence visualization and annotation. Bioinformatics. 2000; 16:944-5.
  • [68]Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012; 28(4):464-9.
  • [69]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-10.
  • [70]Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM et al.. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J Clin Microbiol. 2014; 52(5):1501-10.
  • [71]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. Nucleic Acids Res. 2011; 39:W347-52.
  • [72]Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL et al.. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012; 50:1355-61.
  • [73]Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011; 12:402. BioMed Central Full Text
  • [74]Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK, Chantratita N et al.. Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010; 327:469-74.
  • [75]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297-303.
  • [76]DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al.. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43:491-8.
  • [77]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078-9.
  • [78]Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27:2987-93.
  • [79]Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004; 14:1394-403.
  文献评价指标  
  下载次数:16次 浏览次数:10次