期刊论文详细信息
BMC Microbiology
A degenerate PCR-based strategy as a means of identifying homologues of aminoglycoside and β-lactam resistance genes in the gut microbiota
Paul D Cotter2  Catherine Stanton2  Gerald F Fitzgerald2  R Paul Ross2  Fiona Fouhy1 
[1] School of Microbiology, University College Cork, Cork, Ireland;Alimentary Pharmabiotic Centre, Cork, Ireland
关键词: PCR;    Gut microbiota;    β-lactam;    Aminoglycosides;    Antibiotic resistance;   
Others  :  1142000
DOI  :  10.1186/1471-2180-14-25
 received in 2013-08-12, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

Background

The potential for the human gut microbiota to serve as a reservoir for antibiotic resistance genes has been the subject of recent discussion. However, this has yet to be investigated using a rapid PCR-based approach. In light of this, here we aim to determine if degenerate PCR primers can detect aminoglycoside and β-lactam resistance genes in the gut microbiota of healthy adults, without the need for an initial culture-based screen for resistant isolates. In doing so, we would determine if the gut microbiota of healthy adults, lacking recent antibiotic exposure, is a reservoir for resistance genes.

Results

The strategy employed resulted in the identification of numerous aminoglycoside (acetylation, adenylation and phosphorylation) and β-lactam (including blaOXA, blaTEM, blaSHV and blaCTX-M) resistance gene homologues. On the basis of homology, it would appear that these genes originated from different bacterial taxa, with members of the Enterobacteriaceae being a particularly rich source. The results demonstrate that, even in the absence of recent antibiotic exposure, the human gut microbiota is a considerable reservoir for antibiotic resistance genes.

Conclusions

This study has demonstrated that the gut can be a significant source of aminoglycoside and β-lactam resistance genes, even in the absence of recent antibiotic exposure. The results also demonstrate that PCR-based approaches can be successfully applied to detect antibiotic resistance genes in the human gut microbiota, without the need to isolate resistant strains. This approach could also be used to rapidly screen other complex environments for target genes.

【 授权许可】

   
2014 Fouhy et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327192301683.pdf 253KB PDF download
【 参考文献 】
  • [1]Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010, 74:417-433.
  • [2]Abraham E, Chain E: An enzyme from bacteria able to destroy penicillin. Nature 1940, 146:837-837.
  • [3]Salyers AA, Gupta A, Wang Y: Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 2004, 12:412-416.
  • [4]Broaders E, Gahan CG, Marchesi JR: Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut microbes 2013, 4:271-280.
  • [5]Dethlefsen L, Huse S, Sogin ML, Relman DA: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008, 6:e280. 210.137/journal.pbio.0060280
  • [6]Cotter P, Stanton C, Ross R, Hill C: The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing. Discov Med 2012, 13:193-199.
  • [7]Sommer MOA, Dantas G, Church GM: Functional characterization of the antibiotic resistance reservoir in the human microflora. Sci 2009, 325:1128-1131.
  • [8]Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM: Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 1999, 43:727-737.
  • [9]Page MGP: Beta-Lactam Antibiotics. Antibiot Discov Dev 2012, 1:79-117.
  • [10]Tipper DJ, Strominger JL: Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 1965, 54:1133-1141.
  • [11]Bush K: Characterization of beta-lactamases. Antimicrob Agents Chemother 1989, 33:259-263.
  • [12]Bush K: Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 2010, 13:558-564.
  • [13]Kotra LP, Mobashery S: β-Lactam antibiotics, β-lactamases and bacterial resistance. Bull Inst Pasteur 1998, 96:139-150.
  • [14]Tipper D: Mode of action of β-lactam antibiotics. Rev Infect Dis 1979, 1:39-53.
  • [15]Hughes VM, Datta N: Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 1983, 302:725-726.
  • [16]Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD: Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7:e34953.
  • [17]D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R: Antibiotic resistance is ancient. Nature 2011, 477:457-461.
  • [18]Dallenne C, Da Costa A, Decré D, Favier C, Arlet G: Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010, 65:490-495.
  • [19]Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, Gala J-L: Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. J Clin Microbiol 1995, 33:2864-2867.
  • [20]Heuer H, Krögerrecklenfort E, Wellington E, Egan S, Elsas J, Overbeek L, Collard JM, Guillaume G, Karagouni A, Nikolakopoulou T: Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Immunol Med Microbiol 2002, 42:289-302.
  • [21]Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
  • [22]Bailey JK, Pinyon JL, Anantham S, Hall RM: Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli. J Antimicrob Chemother 2011, 66:745-751.
  • [23]Tenover FC, Huang MB, Rasheed JK, Persing DH: Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluid samples containing Haemophilus influenzae. Eur J Clin Microbiol 1994, 32:2729-2737.
  • [24]Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C: β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 2002, 46:3156-3163.
  • [25]Monstein H-J, Tärnberg M, Nilsson LE: Molecular identification of CTX-M and blaOXY/K1 β-lactamase genes in Enterobacteriaceae by sequencing of universal M13-sequence tagged PCR-amplicons. BMC Infect Dis 2009, 9:7-15. BioMed Central Full Text
  • [26]De Fátima Silva Lopes M, Ribeiro T, Abrantes M, Figueiredo Marques JJ, Tenreiro R, Crespo MTB: Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 2005, 103:191-198.
  • [27]Schmitz F-J, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, Heinz H-P, Jones ME: The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 1999, 43:253-259.
  • [28]Matsumura M, Katakura Y, Imanaka T, Aiba S: Enzymatic and nucleotide sequence studies of a kanamycin-inactivating enzyme encoded by a plasmid from thermophilic bacilli in comparison with that encoded by plasmid pUB110. J bacteriol 1984, 160:413-420.
  • [29]Ubukata K, Yamashita N, Gotoh A, Konno M: Purification and characterization of aminoglycoside-modifying enzymes from Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 1984, 25:754-759.
  • [30]Hegstad K, Mikalsen T, Coque T, Werner G, Sundsfjord A: Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 2010, 16:541-554.
  • [31]Ferretti JJ, Gilmore K, Courvalin P: Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J bacteriol 1986, 167:631-638.
  • [32]Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD: PCR sequencing data of aminoglycoside and beta-lactam resistance genes. BMC microbiology 2013. http://dx.doi.org/10.6070/H42V2D1V; webcite 2013
  • [33]Morris D, Whelan M, Corbett-Feeney G, Cormican M, Hawkey P, Li X, Doran G: First Report of Extended-Spectrum-β-Lactamase-Producing Salmonella enterica Isolates in Ireland. Antimicrob Agents Chemother 2006, 50:1608-1609.
  • [34]Perilli M, Felici A, Franceschini N, De Santis A, Pagani L, Luzzaro F, Oratore A, Rossolini GM, Knox JR, Amicosante G: Characterization of a new TEM-derived beta-lactamase produced in a Serratia marcescens strain. Antimicrob Agents Chemother 1997, 41:2374-2382.
  • [35]Zhao W-H, Hu Z-Q, Chen G, Matsushita K, Fukuchi K, Shimamura T: Characterization of imipenem-resistant Serratia marcescens producing IMP-type and TEM-type beta-lactamases encoded on a single plasmid. Microbiol Res 2007, 162:46-52.
  • [36]Morosini MI, Canton R, Martinez-Beltran J, Negri MC, Perez-Diaz JC, Baquero F, Blazquez J: New extended-spectrum TEM-type beta-lactamase from Salmonella enterica subsp. enterica isolated in a nosocomial outbreak. Antimicrob Agents Chemother 1995, 39:458-461.
  • [37]Wong MHY, Liu M, Wan HY, Chen S: Characterization of Extended-Spectrum-β-Lactamase-Producing Vibrio parahaemolyticus. Antimicrob Agents Chemother 2012, 56:4026-4028.
  • [38]Mokracka J, Koczura R, Kaznowski A: Multiresistant Enterobacteriaceae with class 1 and class 2 integrons in a municipal wastewater treatment plant. Water Res 2012, 46:3353-3363.
  • [39]Coque TM, Oliver A, Pérez-Díaz JC, Baquero F, Cantón R: Genes Encoding TEM-4, SHV-2, and CTX-M-10 Extended-Spectrum β-Lactamases Are Carried by Multiple Klebsiella pneumoniae Clones in a Single Hospital (Madrid, 1989 to 2000). Antimicrob Agents Chemother 2002, 46:500-510.
  • [40]Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA: Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV-and CTX-M-type β-lactamases. Antimicrob Agents Chemother 2003, 47:3554-3560.
  • [41]Heritage J, M’Zali FH, Gascoyne-Binzi D, Hawkey PM: Evolution and spread of SHV extended-spectrum β-lactamases in Gram-negative bacteria. Journal of antimicrobial chemotherapy 1999, 44:309-318.
  • [42]Babini GS, Livermore DM: Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997–1998. J Antimicrob Chemother 2000, 45:183-189.
  • [43]Pitout J, Sanders C, Sanders W Jr: Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med 1997, 103:51-59.
  • [44]Bonnet R: Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004, 48:1-14.
  • [45]Pitout JDD, Laupland KB: Extended-spectrum [beta]-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008, 8:159-166.
  • [46]Coque T, Baquero F, Canton R: Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveillance 2008, 13:19-29.
  • [47]CDC: Antibiotic resistance threats in the United States. 2013. Retrieved from http://www.cdc.gov/drugresistance/threat-report-2013/ webcite
  • [48]Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, Bryce E, Gardam M, Nordmann P, Mulvey MR: Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 2004, 48:3758-3764.
  • [49]Lavollay M, Mamlouk K, Frank T, Akpabie A, Burghoffer B, Redjeb SB, Bercion R, Gautier V, Arlet G: Clonal dissemination of a CTX-M-15 β-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother 2006, 50:2433-2438.
  • [50]Cho YJ, Moon DC, Jin JS, Choi CH, Lee YC, Lee JC: Genetic basis of resistance to aminoglycosides in Acinetobacter spp. and spread of armA in Acinetobacter baumannii sequence group 1 in Korean hospitals. Diagn Microbiol Infect Dis 2009, 64:185-190.
  • [51]Lambert T, Gerbaud G, Courvalin P: Characterization of the chromosomal aac (6′)-Ij gene of Acinetobacter sp. 13 and the aac (6′)-Ih plasmid gene of Acinetobacter baumannii. Antimicrob Agents Chemother 1994, 38:1883-1889.
  • [52]Shaw K, Cramer C, Rizzo M, Mierzwa R, Gewain K, Miller G, Hare R: Isolation, characterization, and DNA sequence analysis of an AAC (6′)-II gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1989, 33:2052-2062.
  • [53]Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC: Prevalence in the United States of aac (6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006, 50:3953-3955.
  • [54]Dijkshoorn L, Nemec A, Seifert H: An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007, 5:939-951.
  • [55]Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA: Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007, 51:3471-3484.
  • [56]Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW: Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 2003, 47:1423-1426.
  • [57]Vanhoof R, Godard C, Content J, Nyssen H, Hannecart-Pokorni E: Detection by polymerase chain reaction of genes encoding aminoglycoside-modifying enzymes in methicillin-resistant Staphylococcus aureus isolates of epidemic phage types. J Med Microbiol 1994, 41:282-290.
  • [58]Han D, Unno T, Jang J, Lim K, Lee S-N, Ko G, Sadowsky MJ, Hur H-G: The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea. Int J Food Microbiol 2011, 144:387-392.
  • [59]Montecalvo MA, Horowitz H, Gedris C, Carbonaro C, Tenover FC, Issah A, Cook P, Wormser GP: Outbreak of vancomycin-, ampicillin-, and aminoglycoside-resistant Enterococcus faecium bacteremia in an adult oncology unit. Antimicrob Agents Chemother 1994, 38:1363-1367.
  • [60]Leclercq R: Enterococci acquire new kinds of resistance. Clin Infect Dis 1997, 24:S80-S84.
  • [61]McKay G, Thompson P, Wright G: Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 1994, 33:6936-6944.
  • [62]Shaw K, Rather P, Hare R, Miller G: Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993, 57:138-163.
  • [63]Fouhy F, Guinane CM, Hussey S, Wall R, Ryan CA, Dempsey EM, Murphy B, Ross RP, Fitzgerald GF, Stanton C: High-throughput sequencing reveals the incomplete, short-term, recovery of the infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamycin. Antimicrob Agents Chemother 2012, 56:5811-5820.
  • [64]de Vries LE, Vallès Y, Agersø Y, Vaishampayan PA, García-Montaner A, Kuehl JV, Christensen H, Barlow M, Francino MP: The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant. PLoS ONE 2011, 6:e21644.
  文献评价指标  
  下载次数:0次 浏览次数:7次