期刊论文详细信息
BMC Research Notes
No association found between the detection of either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus and chronic fatigue syndrome in a blinded, multi-site, prospective study by the establishment and use of the SolveCFS BioBank
Peter Gerondelis4  David A Wilfret4  Katja S Remlinger2  James R Brown5  Daniel L Peterson7  Charles W Lapp8  Nancy G Klimas6  Lucinda Bateman1  K Kimberly McCleary3  Suzanne D Vernon3  David M Irlbeck4 
[1] Fatigue Consultation Clinic, Salt Lake City, UT, USA;Statistical Consulting Group, GlaxoSmithKline, Research Triangle Park, NC, USA;The CFIDS Association of America, Charlotte, NC, USA;Division of Infectious Diseases, GlaxoSmithKline, Research Triangle Park, NC, USA;Department of Computational Biology, GlaxoSmithKline, Collegeville, PA, USA;Nova Southeastern University College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Miami, FL, USA;Sierra Internal Medicine Associates, Incline Village, NV, USA;Hunter-Hopkins Center, Charlotte, NC, USA
关键词: Detection;    PCR;    Retrovirus;    Polytropic murine leukemia virus;    Xenotropic murine virus-related virus;    Chronic fatigue syndrome;   
Others  :  1131749
DOI  :  10.1186/1756-0500-7-461
 received in 2014-01-31, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

In 2009, a retrospective study reported the detection of xenotropic murine leukemia virus-related virus (XMRV) in clinical isolates derived from individuals with chronic fatigue syndrome or myalgic encephalomyelitis (CFS). While many efforts to confirm this observation failed, one report detected polytropic murine leukemia virus (pMLV), instead of XMRV. In both studies, Polymerase Chain Reaction (PCR)-based methods were employed which could provide the basis for the development of a practical diagnostic tool. To confirm these studies, we hypothesized that the ability to detect these viruses will not only depend upon the technical details of the methods employed but also on the criteria used to diagnose CFS and the availability of well characterized clinical isolates.

Methods

A repository of clinical isolates from geographically distinct sites was generated by the collection of fresh blood samples from well characterized CFS and healthy subjects. Molecular techniques were used to generate assay positive controls and to determine the lower limit of detection (LLOD) for murine retroviral and Intracisternal A particle (Cell 12(4):963-72, 1977) detection methods.

Results

We report the establishment of a repository of well-defined, clinical isolates from five, geographically distinct regions of the US, the comparative determination of the LLODs and validation efforts for the previously reported detection methods and the results of an effort to confirm the association of these retroviral signatures in isolates from individuals with CFS in a blinded, multi-site, prospective study. We detected various, murine retroviral DNA signatures but were unable to resolve a difference in the incidence of their detection between isolates from CFS (5/72; 6.7%) and healthy (2/37; 5.4%) subjects (Fisher’s Exact Test, p-value = 1). The observed sequences appeared to reflect the detection of endogenous murine retroviral DNA, which was not identical to either XMRV or pMLV.

Conclusions

We were unable to confirm a previously reported association between the detection of XMRV or pMLV sequences and CFS in a prospective, multi-site study. Murine retroviral sequences were detected at a low frequency that did not differ between CFS and control subjects. The nature of these sequences appeared to reflect the detection of pre-existing, endogenous, murine retroviral DNA in the PCR reagents employed.

【 授权许可】

   
2014 Irlbeck et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150303053237719.pdf 396KB PDF download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Lombardi VC, Ruscetti FW, Das GJ, Pfost MA, Hagen KS, Peterson DL, Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Silverman RH, Mikovits JA: Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 2009, 326:585-589.
  • [2]Lo SC, Pripuzova N, Li B, Komaroff AL, Hung GC, Wang R, Alter HJ: Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors. Proc Natl Acad Sci U S A 2010, 107:15874-15879.
  • [3]Steffen I, Tyrrell DL, Stein E, Montalvo L, Lee TH, Zhou Y, Lu K, Switzer WM, Tang S, Jia H, Hockman D, Santer DM, Logan M, Landi A, Law J, Houghton M, Simmons G: No evidence for XMRV nucleic acids, infectious virus or anti-XMRV antibodies in Canadian patients with chronic fatigue syndrome. PLoS One 2011, 6:e27870.
  • [4]Erlwein O, Kaye S, McClure MO, Weber J, Wills G, Collier D, Wessely S, Cleare A: Failure to detect the novel retrovirus XMRV in chronic fatigue syndrome. PLoS One 2010, 5:e8519.
  • [5]Groom HC, Boucherit VC, Makinson K, Randal E, Baptista S, Hagan S, Gow JW, Mattes FM, Breuer J, Kerr JR, Stoye JP, Bishop KN: Absence of xenotropic murine leukaemia virus-related virus in UK patients with chronic fatigue syndrome. Retrovirology 2010, 7:10.
  • [6]van Kuppeveld FJ, de Jong AS, Lanke KH, Verhaegh GW, Melchers WJ, Swanink CM, Bleijenberg G, Netea MG, Galama JM, van der Meer JW: Prevalence of xenotropic murine leukaemia virus-related virus in patients with chronic fatigue syndrome in the Netherlands: retrospective analysis of samples from an established cohort. BMJ 2010, 340:c1018.
  • [7]Switzer WM, Jia H, Hohn O, Zheng H, Tang S, Shankar A, Bannert N, Simmons G, Hendry RM, Falkenberg VR, Reeves WC, Heneine W: Absence of evidence of xenotropic murine leukemia virus-related virus infection in persons with chronic fatigue syndrome and healthy controls in the United States. Retrovirology 2010, 7:57.
  • [8]Henrich TJ, Li JZ, Felsenstein D, Kotton CN, Plenge RM, Pereyra F, Marty FM, Lin NH, Grazioso P, Crochiere DM, Eggers D, Kuritzkes DR, Tsibris AM: Xenotropic murine leukemia virus-related virus prevalence in patients with chronic fatigue syndrome or chronic immunomodulatory conditions. J Infect Dis 2010, 202:1478-1481.
  • [9]Hong P, Li J, Li Y: Failure to detect Xenotropic murine leukaemia virus-related virus in Chinese patients with chronic fatigue syndrome. Virol J 2010, 7:224.
  • [10]Hohn O, Strohschein K, Brandt AU, Seeher S, Klein S, Kurth R, Paul F, Meisel C, Scheibenbogen C, Bannert N: No evidence for XMRV in German CFS and MS patients with fatigue despite the ability of the virus to infect human blood cells in vitro. PLoS One 2010, 5:e15632.
  • [11]Satterfield BC, Garcia RA, Jia H, Tang S, Zheng H, Switzer WM: Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses. Retrovirology 2011, 8:12.
  • [12]Erlwein O, Robinson MJ, Kaye S, Wills G, Izui S, Wessely S, Weber J, Cleare A, Collier D, McClure MO: Investigation into the presence of and serological response to XMRV in CFS patients. PLoS One 2011, 6:e17592.
  • [13]Furuta RA, Miyazawa T, Sugiyama T, Kuratsune H, Ikeda Y, Sato E, Misawa N, Nakatomi Y, Sakuma R, Yasui K, Yamaguti K, Hirayama F: No association of xenotropic murine leukemia virus-related virus with prostate cancer or chronic fatigue syndrome in Japan. Retrovirology 2011, 8:20.
  • [14]Schutzer SE, Rounds MA, Natelson BH, Ecker DJ, Eshoo MW: Analysis of cerebrospinal fluid from chronic fatigue syndrome patients for multiple human ubiquitous viruses and xenotropic murine leukemia-related virus. Ann Neurol 2011, 69:735-738.
  • [15]Shin CH, Bateman L, Schlaberg R, Bunker AM, Leonard CJ, Hughen RW, Light AR, Light KC, Singh IR: Absence of XMRV retrovirus and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome. J Virol 2011, 85:7195-7202.
  • [16]Knox K, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett J Jr, Qiu X, Luk KC, Schochetman G, Knox A, Kogelnik AM, Levy JA: No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected. Science 2011, 333:94-97.
  • [17]Oakes B, Qiu X, Levine S, Hackett J Jr, Huber BT: Failure to Detect XMRV-Specific Antibodies in the Plasma of CFS Patients Using Highly Sensitive Chemiluminescence Immunoassays. Adv Virol 2011, 2011:854540.
  • [18]Jerome KR, Diem K, Huang ML, Selke S, Corey L, Buchwald D: Xenotropic murine leukemia virus-related virus in monozygotic twins discordant for chronic fatigue syndrome. Diagn Microbiol Infect Dis 2011, 71:66-71.
  • [19]Alter HJ, Mikovits JA, Switzer WM, Ruscetti FW, Lo SC, Klimas N, Komaroff AL, Montoya JG, Bateman L, Levine S, Peterson D, Levin B, Hanson MR, Genfi A, Bhat M, Zheng H, Wang R, Li B, Hung GC, Lee LL, Sameroff S, Heneine W, Coffin J, Horning M, Lipkin WI: A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. MBio 2012, 3:1-7.
  • [20]Simmons G, Glynn SA, Komaroff AL, Mikovits JA, Tobler LH, Hackett J Jr, Tang N, Switzer WM, Heneine W, Hewlett IK, Zhao J, Lo SC, Alter HJ, Linnen JM, Gao K, Coffin JM, Kearney MF, Ruscetti FW, Pfost MA, Bethel J, Kleinman S, Holmberg JA, Busch MP: Failure to confirm XMRV/MLVs in the blood of patients with chronic fatigue syndrome: a multi-laboratory study. Science 2011, 334:814-817.
  • [21]Ali MA, Dale JK, Kozak CA, Goldbach-Mansky R, Miller FW, Straus SE, Cohen JI: Xenotropic murine leukemia virus-related virus is not associated with chronic fatigue syndrome in patients from different areas of the US in the 1990s. Virol J 2011, 8:450.
  • [22]Rasa S, Nora-Krukle Z, Chapenko S, Krumina A, Roga S, Murovska M: No evidence of XMRV provirus sequences in patients with myalgic encephalomyelitis/chronic fatigue syndrome and individuals with unspecified encephalopathy. New Microbiol 2014, 37:17-24.
  • [23]Paolucci S, Piralla A, Zanello C, Minoli L, Baldanti F: Xenotropic and polytropic murine leukemia virus-related sequences are not detected in the majority of patients with chronic fatigue syndrome. New Microbiol 2012, 35:341-344.
  • [24]Cool M, Bouchard N, Masse G, Laganiere B, Dumont A, Hanna Z, Phaneuf D, Morisset R, Jolicoeur P: No detectable XMRV in subjects with chronic fatigue syndrome from Quebec. Virology 2011, 420:66-72.
  • [25]Mikovits JA, Lombardi VC, Pfost MA, Hagen KS, Ruscetti FW: Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Virulence 2010, 1:386-390.
  • [26]Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G, Klein EA, Malathi K, Magi-Galluzzi C, Tubbs RR, Ganem D, Silverman RH, Derisi JL: Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog 2006, 2:e25.
  • [27]Knouf EC, Metzger MJ, Mitchell PS, Arroyo JD, Chevillet JR, Tewari M, Miller AD: Multiple integrated copies and high-level production of the human retrovirus XMRV (xenotropic murine leukemia virus-related virus) from 22Rv1 prostate carcinoma cells. J Virol 2009, 83:7353-7356.
  • [28]Nei M, Jin L: Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 1989, 6:290-300.
  • [29]Sato E, Furuta RA, Miyazawa T: An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR kit is amplified using standard primers for XMRV. Retrovirology 2010, 7:110.
  • [30]Aota S, Gojobori T, Shigesada K, Ozeki H, Ikemura T: Nucleotide sequence and molecular evolution of mouse retrovirus-like IAP elements. Gene 1987, 56:1-12.
  • [31]Lueders KK, Kuff EL: Sequences associated with intracisternal a particles are reiterated in the mouse genome. Cell 1977, 12(4):963-972.
  • [32]Tuke PW, Tettmar KI, Tamuri A, Stoye JP, Tedder RS: PCR master mixes harbour murine DNA sequences. Caveat emptor! PLoS One 2011, 6:e19953.
  • [33]Kearney MF, Spindler J, Wiegand A, Shao W, Anderson EM, Maldarelli F, Ruscetti FW, Mellors JW, Hughes SH, Le Grice SF, Coffin JM: Multiple sources of contamination in samples from patients reported to have XMRV infection. PLoS One 2012, 7:e30889.
  • [34]Rezaei SD, Hearps AC, Mills J, Pedersen J, Tachedjian G: No association between XMRV or related gammaretroviruses in Australian prostate cancer patients. Virol J 2013, 10:20.
  • [35]Hickie I, Davenport T, Vernon SD, Nisenbaum R, Reeves WC, Hadzi-Pavlovic D, Lloyd A: Are chronic fatigue and chronic fatigue syndrome valid clinical entities across countries and health-care settings? Aust N Z J Psychiatry 2009, 43:25-35.
  • [36]Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A: The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 1994, 121:953-959.
  • [37]Carruthers BM: Definitions and aetiology of myalgic encephalomyelitis: how the Canadian consensus clinical definition of myalgic encephalomyelitis works. J Clin Pathol 2007, 60:117-119.
  • [38]Ware JE Jr, Sherbourne CD: The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992, 30:473-483.
  • [39]Hays RD, Sherbourne CD, Mazel RM: The RAND 36-Item Health Survey 1.0. Health Econ 1993, 2:217-227.
  • [40]Jason LA, Sunnquist M, Brown A, Evans M, Vernon SD, Furst J, Simonis V: Examining case definition criteria for chronic fatigue syndrome and myalgic encephalomyelitis. Fatigue 2014, 2:40-56.
  • [41]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [42]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [43]Felsenstein J: PHYLIP (Phylogenetic Inference Package). [3.6]. 1-1. Seattle, WA: University of Washington; 2000. Ref Type: Computer Program
  • [44]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [45]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [46]Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12:357-358.
  • [47]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  文献评价指标  
  下载次数:18次 浏览次数:18次