期刊论文详细信息
BMC Genomics
Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes
Ewen Mullins3  Toni Wendt1  Christopher J Creevey2  Fiona Doohan4  Steven Rudder4 
[1] Current address: Carlsberg Research Centre, Gamle Carlsberg Vej 4-10, 1799 Copenhagen V, Denmark;Current address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK;Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland;UCD Earth Institute and UCD School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
关键词: Genome sequencing;    Agrobacterium tumefaciens;    Transformation;    Ensifer adhaerens;   
Others  :  1217529
DOI  :  10.1186/1471-2164-15-268
 received in 2013-07-31, accepted in 2014-03-19,  发布年份 2014
PDF
【 摘 要 】

Background

Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies.

Results

The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome.

Conclusions

This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).

【 授权许可】

   
2014 Rudder et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707024639251.pdf 2167KB PDF download
Figure 3. 38KB Image download
Figure 2. 55KB Image download
Figure 1. 164KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]AzpirozLeehan R, Feldmann KA: T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 1997, 13(4):152-156.
  • [2]Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G: T-DNA insertional mutagenesis for functional genomics in rice. Plant J 2000, 22(6):561-570.
  • [3]Thomas CM, Tang SJ, Hammond-Kosack K, Jones JDG: Comparison of the hypersensitive response induced by the tomato Cf-4 and Cf-9 genes in Nicotiana spp. Mol Plant Microbe Interact 2000, 13(4):465-469.
  • [4]Johansen LK, Carrington JC: Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 2001, 126(3):930-938.
  • [5]An G, Watson BD, Chiang CC: Transformation of tobacco, tomato, potato, and Arabidopsis-thaliana using a binary Ti vector system. Plant Physiol 1986, 81(1):301-305.
  • [6]James C: ISAAA Brief 46, Global Status of Commercialized Biotech/GM Crops. Ithaca, New York: ISAAA Briefs; 2011. International Service for the Acquisition of Agri-biotech Applications (ISAAA) Retrieved February 2014
  • [7]Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA: Gene transfer to plants by diverse species of bacteria. Nature 2005, 433(7026):629-633.
  • [8]Chi-Ham CL, Boettiger S, Figueroa-Balderas R, Bird S, Geoola JN, Zamora P, Alandete-Saez M, Bennett AB: An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation. Plant Biotechnol J 2012, 10(5):501-510.
  • [9]Nottenburg C, Rodríguez CR: Agrobacterium-mediated gene transfer: a lawyer’s perspective. In Agrobacterium: From Biology to Biotechnology. Edited by Tzfira T, Citovsky V. New York: Springer; 2008:699-735.
  • [10]Van Veen R, den Dulk-Ras H, Schilperoort R, Hooykaas P: Ti plasmid containing Rhizobium meliloti are non-tumorigenic on plants, despite proper virulence gene induction and T-strand formation. Arch Microbiol 1989, 153(1):85-89.
  • [11]Wendt T, Doohan F, Winckelmann D, Mullins E: Gene transfer into Solanum tuberosum via Rhizobium spp. Transgenic Res 2011, 20(2):377-386.
  • [12]Wendt T, Doohan F, Mullins E: Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 2012, 21(3):567-578.
  • [13]Casida LE: Ensifer-adhaerens gen-nov, sp-nov - a bacterial predator of bacteria in soil. Int J Syst Bacteriol 1982, 32(3):339-345.
  • [14]Pitzschke A, Hirt H: New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 2010, 29(6):1021-1032.
  • [15]Gelvin SB: The introduction and expression of transgenes in plants. Curr Opin Biotechnol 1998, 9(2):227-232.
  • [16]Gelvin SB: Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Biol 2000, 51(1):223-256.
  • [17]Gelvin SB: Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 2012, 3:52.
  • [18]Tzfira T, Citovsky V: Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 2006, 17(2):147-154.
  • [19]McCullen CA, Binns AN: Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006, 22:101-127.
  • [20]Gelvin SB: Agrobacterium-mediated plant transformation: the biology behind the “gene-Jockeying” tool. Microbiol Mol Biol Rev 2003, 67(1):16.
  • [21]Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P: The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293(5530):668-672.
  • [22]Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C: Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 2001, 294(5550):2323-2328.
  • [23]Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 2001, 294(5550):2317-2323.
  • [24]Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I: Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 2009, 191(8):2501-2511.
  • [25]Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J: Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci 2001, 98(17):9883-9888.
  • [26]Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J: The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci 2001, 98(17):9889-9894.
  • [27]Tomlinson AD, Fuqua C: Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Curr Opin Microbiol 2009, 12(6):708-714.
  • [28]Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Thienes C, Nester EW: Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol 1989, 171(3):1609-1615.
  • [29]Ielpi L, Dylan T, Ditta GS, Helinski DR, Stanfield SW: The ndvB locus of Rhizobium meliloti encodes a 319-kda protein involved in the production of beta-(1-2)-glucan. J Biol Chem 1990, 265(5):2843-2851.
  • [30]Stanfield SW, Ielpi L, Obrochta D, Helinski DR, Ditta GS: The ndvA gene-product of Rhizobium meliloti is required for beta-(1-2) glucan production and has homology to the Atp-binding export protein HlyB. J Bacteriol 1988, 170(8):3523-3530.
  • [31]Nair GR, Liu Z, Binns AN: Re-examining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 2003, 133(3):989-999.
  • [32]Liu ZY, Jacobs M, Schaff DA, McCullen CA, Binns AN: ChvD, a chromosomally encoded ATP-binding cassette transporter-homologous protein involved in regulation of virulence gene expression in Agrobacterium tumefaciens. J Bacteriol 2001, 183(11):3310-3317.
  • [33]Peng WT, Banta LM, Charles TC, Nester EW: The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J Bacteriol 2001, 183(1):36-45.
  • [34]Charles TC, Nester EW: A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J Bacteriol 1993, 175(20):6614-6625.
  • [35]Close TJ, Rogowsky PM, Kado CI, Winans SC, Yanofsky MF, Nester EW: Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes. J Bacteriol 1987, 169(11):5113-5118.
  • [36]Gray J, Wang J, Gelvin SB: Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. J Bacteriol 1992, 174(4):1086-1098.
  • [37]Kemner JM, Liang XY, Nester EW: The Agrobacterium tumefaciens virulence gene chvE is part of a putative ABC-type sugar transport operon. J Bacteriol 1997, 179(7):2452-2458.
  • [38]Luo L, Qi MS, Yao SY, Cheng HP, Zhu JB, Yu GQ: Role of oxyR from Sinorhizobium meliloti in regulating the expression of catalases. Acta Biochim Biophys Sin 2005, 37(6):421-428.
  • [39]Xu XQ, Li LP, Pan SQ: Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction. Mol Microbiol 2001, 42(3):645-657.
  • [40]Nakjarung K, Mongkolsuk S, Vattanaviboon P: The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxide responses. Biochem Biophys Res Commun 2003, 304(1):41-47.
  • [41]Heckman J, Strick J: Teaching plant-soil relationships with color images of rhizosphere pH. J Nat Resour Life Sci Educ 1996, 25(1):13-16.
  • [42]Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW: Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2008, 190(2):494-507.
  • [43]Hellweg C, Puhler A, Weidner S: The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 2009, 9:37. BioMed Central Full Text
  • [44]Li LP, Jia YH, Hou QM, Charles TC, Nester EW, Pan SQ: A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci 2002, 99(19):12369-12374.
  • [45]Sugawara M, Epstein B, Badgley B, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Médigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ: Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 2013, 14(2):R17. BioMed Central Full Text
  • [46]Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M: The genetics of symbiotic nitrogen fixation: comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes 2012, 3(1):138-166.
  • [47]Thi Vu H, Itoh H, Ishii S, Senoo K, Otsuka S: Identification and phylogenetic characterization of cobalamin biosynthetic genes of Ensifer adhaerens. Microbes Environ 2013, 28(1):153-155.
  • [48]Jensen LJ, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P: eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 2008, 36(Database issue):D250-D254.
  • [49]Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P: eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 2012, 40(Database issue):D284-D289.
  • [50]Matthysse AG, Yarnall H, Boles SB, McMahan S: A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biochim Biophys Acta 2000, 1490(1–2):208-212.
  • [51]Matthysse AG, Jaeckel P, Jeter C: attG and attC mutations of Agrobacterium tumefaciens are dominant negative mutations that block attachment and virulence. Can J Microbiol 2008, 54(4):241-247.
  • [52]Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW: The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci U S A 2007, 104(28):11790-11795.
  • [53]Matthysse AG, McMahan S: Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 1998, 64(7):2341-2345.
  • [54]Wessel M, Klusener S, Godeke J, Fritz C, Hacker S, Narberhaus F: Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 2006, 62(3):906-915.
  • [55]Klusener S, Aktas M, Thormann KM, Wessel M, Narberhaus F: Expression and physiological relevance of Agrobacterium tumefaciens phosphatidylcholine biosynthesis genes. J Bacteriol 2009, 191(1):365-374.
  • [56]Rong L, Karcher S, O’Neal K, Hawes M, Yerkes C, Jayaswal R, Hallberg C, Gelvin S: picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 1990, 172(10):5828-5836.
  • [57]Cheng HP, Walker GC: Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J Bacteriol 1998, 180(1):20-26.
  • [58]Bahlawane C, McIntosh M, Krol E, Becker A: Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 2008, 21(11):1498-1509.
  • [59]Wirawan IGP, Kojima M: Distribution of a chromosomal virulence gene, acvB, of Agrobacterium tumefaciens among various bacteria. Biosci Biotechnol Biochem 1996, 60(1):50-53.
  • [60]Ceci P, Ilari A, Falvo E, Chiancone E: The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage x-ray crystal structure, iron binding and hydroxyl radical scavenging properties. J Biol Chem 2003, 278(22):20319-20326.
  • [61]Saenkham P, Eiarnphungporn W, Farrand SK, Vattanaviboon P, Mongkolsuk S: Multiple superoxide dismutases in Agrobacterium tumefaciens: functional analysis, gene regulation, and influence on tumorigenesis. J Bacteriol 2007, 189(24):8807-8817.
  • [62]Rogel MA, Hernandez-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E: Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 2001, 67(7):3264-3268.
  • [63]Willems A, Fernandez-Lopez M, Munoz-Adelantado E, Goris J, De Vos P, Martinez-Romero E, Toro N, Gillis M: Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 2003, 53(Pt 4):1207-1217.
  • [64]Bittinger MA, Gross JA, Widom J, Clardy J, Handelsman J: Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid. Mol Plant Microbe Interact 2000, 13(9):1019-1021.
  • [65]Jia YH, Li LP, Hou QM, Pan SQ: An Agrobacterium gene involved in tumorigenesis encodes an outer membrane protein exposed on the bacterial cell surface. Gene 2002, 284(1–2):113-124.
  • [66]Foreman DL, Vanderlinde EM, Bay DC, Yost CK: Characterization of a gene family of outer membrane proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the role of the sensor kinase ChvG in their regulation. J Bacteriol 2010, 192(4):975-983.
  • [67]de Rudder KEE, Lopez-Lara IM, Geiger O: Inactivation of the gene for phospholipid N-methyltransferase in Sinorhizobium meliloti: phosphatidylcholine is required for normal growth. Mol Microbiol 2000, 37(4):763-772.
  • [68]Aktas M, Jost KA, Fritz C, Narberhaus F: Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter. J Bacteriol 2011, 193(19):5119-5129.
  • [69]Dupont L, Garcia I, Poggi MC, Alloing G, Mandon K, Le Rudulier D: The Sinorhizobium meliloti ABC transporter cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. J Bacteriol 2004, 186(18):5988-5996.
  • [70]Matthysse AG: Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J Bacteriol 1983, 154(2):906-915.
  • [71]Basler M, Ho BT, Mekalanos JJ: Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 2013, 152(4):884-894.
  • [72]Kang HW, Wirawan IGP, Kojima M: Cellular-localization and functional-analysis of the protein encoded by the chromosomal virulence gene (acvb) of Agrobacterium tumefaciens. Biosci Biotechnol Biochem 1994, 58(11):2024-2032.
  • [73]Kalogeraki VS, Winans SC: The octopine-type Ti plasmid pTia6 of Agrobacterium tumefaciens contains a gene homologous to the chromosomal virulence gene acvB. J Bacteriol 1995, 177(4):892-897.
  • [74]Young JM: Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission? Int J Syst Evol Microbiol 2010, 60(Pt 7):1711-1713.
  • [75]Chen WX, Yan GH, Li JL: Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen-nov. Int J Syst Bacteriol 1988, 38(4):392-397.
  • [76]Young JM: The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 2003, 53(6):2107-2110.
  • [77]Hood EE, Gelvin SB, Melchers LS, Hoekema A: New agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 1993, 2(4):208-218.
  • [78]Wilson K: Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 1987, 2:2.4. 1-2.4. 5
  • [79]Chaisson MJ, Tesler G: Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics 2012, 13(1):238. BioMed Central Full Text
  • [80]Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011, 27(4):578-579.
  • [81]Boetzer M, Pirovano W: Toward almost closed genomes with GapFiller. Genome Biol 2012, 13(6):R56. BioMed Central Full Text
  • [82]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
  文献评价指标  
  下载次数:42次 浏览次数:21次