期刊论文详细信息
BMC Systems Biology
Dynamics of p53 and NF-κB regulation in response to DNA damage and identification of target proteins suitable for therapeutic intervention
Michael Naumann1  Rainer Poltz1 
[1] Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, Magdeburg, 39120, Germany
关键词: Logical model;    Cancer;    Apoptosis;    Cell cycle arrest;    Signal transduction;    Topoisomerase inhibitors;   
Others  :  1143599
DOI  :  10.1186/1752-0509-6-125
 received in 2012-05-16, accepted in 2012-08-28,  发布年份 2012
【 摘 要 】

Background

The genome is continuously attacked by a variety of agents that cause DNA damage. Recognition of DNA lesions activates the cellular DNA damage response (DDR), which comprises a network of signal transduction pathways to maintain genome integrity. In response to severe DNA damage, cells undergo apoptosis to avoid transformation into tumour cells, or alternatively, the cells enter permanent cell cycle arrest, called senescence. Most tumour cells have defects in pathways leading to DNA repair or apoptosis. In addition, apoptosis could be counteracted by nuclear factor kappa B (NF-κB), the main anti-apoptotic transcription factor in the DDR. Despite the high clinical relevance, the interplay of the DDR pathways is poorly understood. For therapeutic purposes DNA damage signalling processes are induced to induce apoptosis in tumour cells. However, the efficiency of radio- and chemotherapy is strongly hampered by cell survival pathways in tumour cells. In this study logical modelling was performed to facilitate understanding of the complexity of the signal transduction networks in the DDR and to provide cancer treatment options.

Results

Our comprehensive discrete logical model provided new insights into the dynamics of the DDR in human epithelial tumours. We identified new mechanisms by which the cell regulates the dynamics of the activation of the tumour suppressor p53 and NF-κB. Simulating therapeutic intervention by agents causing DNA single-strand breaks (SSBs) or DNA double-strand breaks (DSBs) we identified candidate target proteins for sensitization of carcinomas to therapeutic intervention. Further, we enlightened the DDR in different genetic diseases, and by failure mode analysis we defined molecular defects putatively contributing to carcinogenesis.

Conclusion

By logic modelling we identified candidate target proteins that could be suitable for radio- and chemotherapy, and contributes to the design of more effective therapies.

【 授权许可】

   
2012 Poltz and Naumann; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 27KB Image download
Figure 4 . 101KB Image download
Figure 3 . 163KB Image download
Figure 2 . 226KB Image download
Figure 1 . 126KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 1.

【 参考文献 】
  • [1]Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell 2010, 40:179-204.
  • [2]Khanna KK, Jackson SP: DNA double-strand breaks: signalling, repair and the cancer connection. Nat Genet 2001, 27:247-254.
  • [3]De Bont R, van Larebeke N: Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004, 19:169-185.
  • [4]Shimada M, Nakanishi M: DNA damage checkpoints and cancer. J Mol Histol 2006, 37:253-260.
  • [5]Cann KL, Hicks GG: Regulation of the cellular DNA double-strand break response. Biochem Cell Biol 2007, 85:663-674.
  • [6]D’Adda di Fagagna F: Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008, 8:512.
  • [7]Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell 2009, 137:413-431.
  • [8]Batchelor E, Loewer A, Lahav G: The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 2009, 9:371-377.
  • [9]Zhang XP, Liu F, Wang W: Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci U S A 2011, 108:8990-8995.
  • [10]McCool KW, Miyamoto S: DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev 2012, 246:311-326.
  • [11]Jackson SP, Bartek J: The DNA-damage response in human biology and disease. Nature 2009, 461:1071-1078.
  • [12]Al-Ejeh F, Kumar R, Wiegmans A, Lakhani SR, Brown MP, Khanna KK: Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 2010, 29:6085-6098.
  • [13]Portugal J, Mansilla S, Bataller M: Mechanisms of drug-induced mitotic catastrophe in cancer cells. Curr Pharm Des 2010, 16:69-78.
  • [14]Deorukhkar A, Krishnan S: Targeting inflammatory pathways for tumor radiosensitization. Biochem Pharmacol 2010, 80:1904-1914.
  • [15]Reinhardt HC, Jiang H, Hemann MT, Yaffe MB: Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 2009, 8:3112-3119.
  • [16]Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT: The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 2009, 23:1895-1909.
  • [17]Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinforma 2006, 7:56. BioMed Central Full Text
  • [18]Albert R, Wang RS: Discrete dynamic modeling of cellular signaling networks. Methods Enzymol 2009, 467:281-306.
  • [19]Sahin Ö, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern M, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 2009, 3:1. BioMed Central Full Text
  • [20]Franke R, Müller M, Wundrack N, Gilles ED, Klamt S, Kähne T, Naumann M: Host-pathogen system biology: Logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol 2008, 2:4. BioMed Central Full Text
  • [21]Poltz R, Franke R, Schweitzer K, Klamt S, Gilles ED, Naumann M: Logical network of genotoxic stress-induced NF-κB signal transduction predicts putative target structures for therapeutic intervention strategies. Adv Appl Bioinform Chem 2009, 2:125-138.
  • [22]Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, Albert I, Albert R: Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia. PLoS Comput Biol 2012, 7:11.
  • [23]Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A: Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 2010, 6:3.
  • [24]Guo CY, Brautigan DL, Larner JM: ATM-dependent dissociation of B55 regulatory subunit from nuclear PP2A-B55 in response to ionizing radiation. J Biol Chem 2002, 277:4839-4844.
  • [25]Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, Lees-Miller SP, Khanna KK: Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004, 23:4451-4461.
  • [26]Xu Y, Fang F, St Clair DK, Sompol P, Josson S, St Clair WH: SN52, a novel nuclear factor-kappaB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate cancer cells to ionizing radiation. Mol Cancer Ther 2008, 7:236-2376.
  • [27]Kenneth NS, Mudie S, Rocha S: IKK and NF-kappaB-mediated regulation of Claspin impacts on ATR checkpoint function. EMBO J 2010, 29:2966-2978.
  • [28]Janssens S, Tinel A, Lippens S, Tschopp J: PIDD Mediates NF-κB Activation in Response to DNA Damage. n Cell 2005, 123:1079-1092.
  • [29]Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, Timofeev ON, Dudgeon C, Fornace AJ, Anderson CW, Minami Y, Appella E, Bulavin DV: Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 2006, 23:757-764.
  • [30]Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O'Connor PM, Appella E: Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci U S A 1997, 94:6048-6053.
  • [31]Zhou BB, Bartek J: Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 2004, 4:216-225.
  • [32]Tofilon PJ, Camphausen K: Molecular targets for tumor radiosensitization. Chem Rev 2009, 109:2974-2988.
  • [33]Lavin MF: Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008, 9:759-769. Erratum in: Nat Rev Mol Cell Biol 2008
  • [34]Bolderson E, Richard DJ, Zhou BB, Khanna KK: Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009, 15:6314-6320.
  • [35]Wagner JM, Kaufmann SH: Prospects for the use of ATR inhibitors to treat cancer. Pharmaceuticals 2010, 3:1311-1334.
  • [36]Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SH: The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons. J Biol Chem 2005, 280:14349-14355.
  • [37]Ma CX, Janetka JW, Piwnica-Worms H: Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 2011, 17:88-96.
  • [38]Tse AN, Rendahl KG, Sheikh T, Cheema H, Aardalen K, Embry M, Ma S, Moler EJ, Ni ZJ, de Menezes DE L, Hibner B, Gesner TG, Schwartz GK: CHIR-124, a novel potent inhibitor of Chk1, potentiates the cytotoxicity of topoisomerase I poisons in vitro and in vivo. Clin Cancer Res 2007, 13:591-602.
  • [39]Garrett MD, Collins I: Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 2011, 32:308-316.
  • [40]Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM, Canman CE, Normolle DP, Zabludoff SD, Maybaum J, Lawrence TS: Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 2010, 70:4972-4981.
  • [41]Martin SE, Wu ZH, Gehlhaus K, Jones TL, Zhang YW, Guha R, Miyamoto S, Pommier Y, Caplen NJ: RNAi screening identifies TAK1 as a potential target for the enhanced efficacy of topoisomerase inhibitors. Curr Cancer Drug Targets 2011, 11:976-986.
  • [42]Anderson VE, Walton MI, Eve PD, Boxall KJ, Antoni L, Caldwell JJ, Aherne W, Pearl LH, Oliver AW, Collins I, Garrett MD: CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res 2011, 71:463-472.
  • [43]Melchionna R, Chen XB, Blasiani A, McGowan CH: Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2000, 2:762-765.
  • [44]Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK: BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 2004, 279:31251-31258.
  • [45]Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB, Yan Q, Gong L, Sun SM, Deng M, Liu Y: Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene 2006, 25:3006-3022.
  • [46]Fujimoto H, Onishi N, Kato N, Takekawa M, Xu XZ, Kosugi A, Kondo T, Imamura M, Oishi I, Yoda A, Minami Y: Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 2006, 13:1170-1180.
  • [47]Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 2007, 8:450-461.
  • [48]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 2003, 100:11980-11985.
  • [49]Loewer A, Batchelor E, Gaglia G, Lahav G: Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 2010, 142:89-100.
  • [50]Thieffry D: Dynamical roles of biological regulatory circuits. Brief Bioinform 2007, 8:220-225.
  • [51]Cheong R, Hoffmann A, Levchenko A: Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 2008, 4:192.
  • [52]Abou-Jaoudé W, Ouattara DA, Kaufman M: From structure to dynamics: Frequency tuning in the p53–Mdm2 network I. Logical approach. J Theor Biol 2009, 258:561-577.
  • [53]Tournier L, Chaves M: Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics. J Theor Biol 2009, 260:196-209.
  • [54]Naldi A, Remy E, Thieffry D, Chaouiya C: Dynamically consistent reduction of logical regulatory graphs. Theor Comp Sci. 2011, 412:2207-2218.
  • [55]Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 17:1917-1925.
  • [56]Schuijer M, Berns EM: TP53 and ovarian cancer. Hum Mutat 2003, 21:285-291.
  • [57]Sombroek D, Hofmann TG: How cells switch HIPK2 on and off. Cell Death Differ 2009, 16:187-194.
  • [58]Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455:1069-1075.
  • [59]Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton D, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber B, Rahman N, Stratton MR: CHEK2-Breast Cancer Consortium. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002, 31:55-59.
  • [60]Gudkov AV, Komarova EA: Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005, 33:726-736.
  • [61]Jorgensen TJ, Shiloh Y: The ATM gene and the radiobiology of ataxia-telangiectasia. Int J Radiat Biol 1996, 69:527-537.
  • [62]Antoccia A, Kobayashi J, Tauchi H, Matsuura S, Komatsu K: Nijmegen breakage syndrome and functions of the responsible protein, NBS1. Genome Dyn 2006, 1:191-205.
  • [63]Barbi G, Scheres JM, Schindler D, Taalman RD, Rodens K, Mehnert K, Müller M, Seyschab H: Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am J Med Genet 1991, 1:44-50.
  • [64]Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T: Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 2009, 84:605-616.
  • [65]O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA: An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst). 2004, 3:1227-1235.
  • [66]Sherr CJ: Principles of tumor suppression. Cell 2004, 116:235-246.
  • [67]The Tumor Gene Family of Databases. http://www.tumor-gene.org/tgdf.html webcite
  • [68]Karin M: Nuclear factor-kappaB in cancer development and progression. Nature 2006, 441:431-436.
  • [69]Loeb LA, Loeb KR, Anderson JP: Multiple mutations and cancer. Proc Natl Acad Sci U S A 2003, 100:776-781.
  • [70]Balmain A, Gray J, Ponder B: The genetics and genomics of cancer. Nat Genet 2003, 33(Suppl):238-244.
  • [71]Balmain A, Nagase H: Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet 1998, 14:139-144.
  • [72]The American Type Culture Collection. http://www.lgcstandards-atcc.org/ webcite
  • [73]LOCATE subcellular localization database. http://locate.imb.uq.edu.au/ webcite
  • [74]UniProtKB Protein Knowledgebase. http://www.uniprot.org/uniprot/ webcite
  • [75]Fauré A, Thieffry D: Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol Biosyst 2009, 5:1569-1581.
  • [76]Thomas R: Regulatory networks seen as asynchronous automata: A logical description. J Theor Biol 1991, 1:1-23.
  • [77]Mendelson E: Schaum's outline of Boolean algebra and switching circuits. McGraw-Hill, New York; 1970.
  • [78]Klamt S, Haus UU, Theis F: Hypergraphs and cellular networks. PLoS Comput Biol 2009, 5:e1000385.
  • [79]Funahashi A, Tanimura N, Morohashi M, Kitano H: Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 2003, 1:159-162.
  • [80]Klamt S, Saez-Rodriguez J, Gilles ED: Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 2007, 1:2. BioMed Central Full Text
  • [81]Schwöbbermeyer H, Wünschiers R: MAVisto: a tool for biological network motif analysis. Methods Mol Biol 2012, 804:263-280.
  • [82]Thomas R: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. Springer Ser Synergetics 1981, 9:180-193.
  • [83]Naldi A, Thieffry D, Chaouiya C: Decision diagrams for the representation of logical models of regulatory networks. Lecture Notes Comput Sci 2007, 4695:233-247.
  • [84]Chaouiya C, Naldi A, Thieffry D: Logical modelling of gene regulatory networks with GINsim. Methods Mol Biol 2012, 804:463-479.
  • [85]Samaga R, Von Kamp A, Klamt S: Computing combinatorial intervention strategies and failure modes in signaling networks. J Comput Biol 2010, 17:39-53.
  • [86]Xiao Y: A tutorial on analysis and simulation of boolean gene regulatory network models. Curr Genomics 2009, 10:511-525.
  • [87]Klemm K, Bornholdt S: Stable and unstable attractors in Boolean networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2005, 72:055101.
  • [88]Fauré A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 14:e124-e131.
  文献评价指标  
  下载次数:24次 浏览次数:15次