期刊论文详细信息
BMC Systems Biology
Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction
Jens Nielsen3  Taysir H Soliman1  Intawat Nookaew3  Saeed Shoaie3  Fredrik H Karlsson3  Ibrahim E El-Semman2 
[1] Information Systems Department, Faculty of Computers and Information, Assiut University, Assiut, Egypt;Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt;Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
关键词: Metabolic modeling of gut microbiota;    Genome-scale metabolic model;    Faecalibacterium prausnitzii A2-165;    Bifidobacterium adolescentis L2-32;   
Others  :  866575
DOI  :  10.1186/1752-0509-8-41
 received in 2013-11-17, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

The gut microbiota plays an important role in human health and disease by acting as a metabolic organ. Metagenomic sequencing has shown how dysbiosis in the gut microbiota is associated with human metabolic diseases such as obesity and diabetes. Modeling may assist to gain insight into the metabolic implication of an altered microbiota. Fast and accurate reconstruction of metabolic models for members of the gut microbiota, as well as methods to simulate a community of microorganisms, are therefore needed. The Integrated Microbial Genomes (IMG) database contains functional annotation for nearly 4,650 bacterial genomes. This tremendous new genomic information adds new opportunities for systems biology to reconstruct accurate genome scale metabolic models (GEMs).

Results

Here we assembled a reaction data set containing 2,340 reactions obtained from existing genome-scale metabolic models, where each reaction is assigned with KEGG Orthology. The reaction data set was then used to reconstruct two genome scale metabolic models for gut microorganisms available in the IMG database Bifidobacterium adolescentis L2-32, which produces acetate during fermentation, and Faecalibacterium prausnitzii A2-165, which consumes acetate and produces butyrate. F. prausnitzii is less abundant in patients with Crohn’s disease and has been suggested to play an anti-inflammatory role in the gut ecosystem. The B. adolescentis model, iBif452, comprises 699 reactions and 611 unique metabolites. The F. prausnitzii model, iFap484, comprises 713 reactions and 621 unique metabolites. Each model was validated with in vivo data. We used OptCom and Flux Balance Analysis to simulate how both organisms interact.

Conclusions

The consortium of iBif452 and iFap484 was applied to predict F. prausnitzii’s demand for acetate and production of butyrate which plays an essential role in colonic homeostasis and cancer prevention. The assembled reaction set is a useful tool to generate bacterial draft models from KEGG Orthology.

【 授权许可】

   
2014 El-Semman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075144417.pdf 1452KB PDF download
16KB Image download
45KB Image download
91KB Image download
31KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Wooley JC, Godzik A, Friedberg I: A primer on metagenomics. PLoS Comput Biol 2010, 6(2):e1000667.
  • [2]Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, et al.: Enterotypes of the human gut microbiome. Nature 2011, 473(7346):174-180.
  • [3]Tremaroli V, Backhed F: Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489(7415):242-249.
  • [4]Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S: Host-gut microbiota metabolic interactions. Science 2012, 336(6086):1262-1267.
  • [5]Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J: Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012, 3:1245.
  • [6]Flint HJ: Obesity and the gut microbiota. J Clin Gastroenterol 2011, 45:S128-S132. 110.1097/MCG.1090b1013e31821f31844c31824
  • [7]Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI: A core gut microbiome in obese and lean twins. Nature 2009, 457(7228):480-484.
  • [8]Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J: Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 55(2):205-211.
  • [9]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(suppl 1):D277-D280.
  • [10]Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, et al.: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464(7285):59-65.
  • [11]Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C: Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012, 8(6):e1002358.
  • [12]Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC: IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012, 40(D1):D115-D122.
  • [13]Karlsson FH, Nookaew I, Petranovic D, Nielsen J: Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol 2011, 29(6):251-258.
  • [14]Zengler K, Palsson BO: A road map for the development of community systems (CoSy) biology. Nat Rev Micro 2012, 10(5):366-372.
  • [15]Borenstein E: Computational systems biology and in silico modeling of the human microbiome. Brief Bioinform 2012, 13(6):769-780.
  • [16]Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J: The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 2013, 9(3):e1002980.
  • [17]Boele J, Olivier B, Teusink B: FAME, the flux analysis and modeling environment. BMC Syst Biol 2012, 6(1):8. BioMed Central Full Text
  • [18]Feng X, Xu Y, Chen Y, Tang Y: MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 2012, 6(1):94. BioMed Central Full Text
  • [19]Henry M, DeJongh C, Best A, Frybarger P, Linsay B, Stevens R: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28:977-982.
  • [20]Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J: Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 2012, 6(1):24. BioMed Central Full Text
  • [21]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [22]Eddy SR: A new generation of homology search tools based on probabilistic inference. Genome Inform 2009, 23(1):205-211.
  • [23]Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9(1):75. BioMed Central Full Text
  • [24]Alcántara R, Axelsen KB, Morgat A, Belda E, Coudert E, Bridge A, Cao H, de Matos P, Ennis M, Turner S, Owen G, Bougueleret L, Xenarios I, Steinbeck C: Rhea—a manually curated resource of biochemical reactions. Nucleic Acids Res 2012, 40(D1):D754-D760.
  • [25]Falony G, Calmeyn T, Leroy F, De Vuyst L: Coculture fermentations of bifidobacterium species and bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Appl Environ Microbiol 2009, 75(8):2312-2319.
  • [26]Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M: Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 2013, 11(1):61. BioMed Central Full Text
  • [27]Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H: Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469(7331):543-547.
  • [28]Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 2008, 105(43):16731-16736.
  • [29]Claesson MJ, Jeffery IB, Conde S, Power SE, O/'Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O/'Sullivan O, Fitzgerald GF, Deane J, O/'Connor M, Harnedy N, O/'Connor K, O/'Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O/'Toole PW: Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488(7410):178-184.
  • [30]Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, et al.: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490(7418):55-60.
  • [31]Klitgord N, Segrè D: Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010, 6(11):e1001002.
  • [32]Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA: Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 2007, 3:92.
  • [33]Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, Nielsen J: Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci Rep 2013, 3:2532.
  • [34]Zomorrodi AR, Maranas CD: OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 2012, 8(2):e1002363.
  • [35]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [36]Becker S, Palsson B: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 2005, 5(1):8. BioMed Central Full Text
  • [37]Osterlund T, Nookaew I, Bordel S, Nielsen J: Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 2013, 7(1):36. BioMed Central Full Text
  • [38]Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ: Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 2006, 281(52):40041-40048.
  • [39]Gonnerman MC, Benedict MN, Feist AM, Metcalf WW, Price ND: Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746. Biotechnol J 2013, 8(9):1070-1079.
  • [40]Jamshidi N, Palsson B: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 2007, 1(1):26. BioMed Central Full Text
  • [41]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40(D1):D290-D301.
  • [42]Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families. Nucleic Acids Res 2003, 31(1):371-373.
  • [43]Saier MH, Yen MR, Noto K, Tamang DG, Elkan C: The transporter classification database: recent advances. Nucleic Acids Res 2009, 37(suppl 1):D274-D278.
  • [44]Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2012, 40(D1):D742-D753.
  • [45]Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003, 21(4):162-169.
  • [46]Park JM, Kim TY, Lee SY: Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol Adv 2009, 27(6):979-988.
  • [47]Neidhardt FC, Ingraham J, Schaechter M: Physiology of the Bacterial Cell: A Molecular Approach. Sunderland, MA: Sinauer Associates; 1990.
  • [48]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5(4):264-276.
  • [49]Schellenberger J, Que R, Fleming R, Thiele I, Orth J, Feist A, Zielinski D, Bordbar A, Lewis N, Rahmanian S, Kang J, Hyduke D, Palsson B: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6:1290-1307.
  • [50]Czyzyk J, Mesnier MP, More JJ: The NEOS Server. Computational Science & Engineering, IEEE 1998, 5(3):68-75.
  • [51]Bornstein BJ, Keating SM, Jouraku A, Hucka M: LibSBML: an API Library for SBML. Bioinformatics 2008, 24(6):880-881.
  • [52]Liu L, Agren R, Bordel S, Nielsen J: Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 2010, 584(12):2556-2564.
  • [53]Thiele I, Palsson BO: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protocols 2010, 5(1):93-121.
  • [54]Stephanopoulos GN, Aristidou AA, Nielsen J: Chapter 2 - Review of Cellular Metabolism. In Metabolic Engineering. San Diego: Academic Press; 1998:21-79.
  • [55]Ze X, Duncan SH, Louis P, Flint HJ: Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 2012, 6(8):1535-1543.
  • [56]Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ, Flint HJ: Cultured representatives of two major phylogroups of human colonic faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012, 78(2):420-428.
  • [57]Lee J-H, O’Sullivan DJ: Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 2010, 74(3):378-416.
  • [58]Price NP, Whitehead TR, Côté GL: Gas chromatography–mass spectrometry (GC-MS) techniques for metabolic flux analysis of the Bifido shunt pathway. Biocatal Biotransformation 2006, 24(1):95-98.
  • [59]Fandi KG, Ghazali HM, Yazid AM, Raha AR: Purification and N-terminal amino acid sequence of fructose-6-phosphate phosphoketolase from Bifidobacterium longum BB536. Lett Appl Microbiol 2001, 32(4):235-239.
  • [60]Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ: Acetate utilization and butyryl coenzyme A (CoA):Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002, 68(10):5186-5190.
  • [61]Degnan B, Macfarlane G: Effect of dilution rate and carbon availability on bifidobacterium breve fermentation. Appl Microbiol Biotechnol 1994, 40(6):800-805.
  • [62]Van der Meulen R, Adriany T, Verbrugghe K, De Vuyst L: Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl Environ Microbiol 2006, 72(8):5204-5210.
  • [63]Teusink B, Bachmann H, Molenaar D: Systems biology of lactic acid bacteria: a critical review. Microb Cell Factories 2011, 10(Suppl 1):S11. BioMed Central Full Text
  • [64]Oliveira A, Nielsen J, Forster J: Modeling lactococcus lactis using a genome-scale flux model. BMC Microbiol 2005, 5(1):39. BioMed Central Full Text
  • [65]van Hoek M, Merks R: Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst Biol 2012, 6(1):22. BioMed Central Full Text
  • [66]Vazquez A, Beg Q, de Menezes M, Ernst J, Bar-Joseph Z, Barabasi A-L, Boros L, Oltvai Z: Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst Biol 2008, 2(1):7. BioMed Central Full Text
  • [67]Teusink B, Wiersma A, Jacobs L, Notebaart R, Smid E: Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. PLoS Comput Biol 2009, 5:e1000410.
  • [68]de Vries W, Stouthamer AH: Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol 1968, 96(2):472-478.
  • [69]Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ: Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 2004, 91(06):915-923.
  • [70]Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ: Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002, 52(6):2141-2146.
  • [71]Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Dore J: Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009, 15(8):1183-1189.
  • [72]Flint HJ, Scott KP, Louis P, Duncan SH: The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012, 9(10):577-589.
  • [73]Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ: Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008, 27(2):104-119.
  • [74]Wrzodek C, Buchel F, Ruff M, Drager A, Zell A: Precise generation of systems biology models from KEGG pathways. BMC Syst Biol 2013, 7(1):15. BioMed Central Full Text
  文献评价指标  
  下载次数:23次 浏览次数:1次