期刊论文详细信息
BMC Systems Biology
Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth
Sang Yup Lee2  Jay H Lee3  Tae Yong Kim1  Seung Bum Sohn1 
[1] Bioinformatics Research Center, KAIST, Daejeon, Republic of Korea;Department of Bio and Brain Engineering and Bioinformatics Research Center, KAIST, Daejeon, Republic of Korea;Department of Chemical and Biomolecular Engineering (WCU Program), KAIST, Daejeon, Republic of Korea
关键词: Essentiality;    Single-gene mutant growth;    Genome-scale metabolic model;    Schizosaccharomyces pombe;   
Others  :  1144355
DOI  :  10.1186/1752-0509-6-49
 received in 2011-10-24, accepted in 2012-05-25,  发布年份 2012
PDF
【 摘 要 】

Background

Over the last decade, the genome-scale metabolic models have been playing increasingly important roles in elucidating metabolic characteristics of biological systems for a wide range of applications including, but not limited to, system-wide identification of drug targets and production of high value biochemical compounds. However, these genome-scale metabolic models must be able to first predict known in vivo phenotypes before it is applied towards these applications with high confidence. One benchmark for measuring the in silico capability in predicting in vivo phenotypes is the use of single-gene mutant libraries to measure the accuracy of knockout simulations in predicting mutant growth phenotypes.

Results

Here we employed a systematic and iterative process, designated as Reconciling In silico/in vivo mutaNt Growth (RING), to settle discrepancies between in silico prediction and in vivo observations to a newly reconstructed genome-scale metabolic model of the fission yeast, Schizosaccharomyces pombe, SpoMBEL1693. The predictive capabilities of the genome-scale metabolic model in predicting single-gene mutant growth phenotypes were measured against the single-gene mutant library of S. pombe. The use of RING resulted in improving the overall predictive capability of SpoMBEL1693 by 21.5%, from 61.2% to 82.7% (92.5% of the negative predictions matched the observed growth phenotype and 79.7% the positive predictions matched the observed growth phenotype).

Conclusion

This study presents validation and refinement of a newly reconstructed metabolic model of the yeast S. pombe, through improving the metabolic model’s predictive capabilities by reconciling the in silico predicted growth phenotypes of single-gene knockout mutants, with experimental in vivo growth data.

【 授权许可】

   
2012 Sohn et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330120822176.pdf 1223KB PDF download
Figure 4. 76KB Image download
Figure 3. 69KB Image download
Figure 2. 31KB Image download
Fig. 13. 178KB Image download
【 图 表 】

Fig. 13.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Park JH, Lee KH, Kim TY, Lee SY: Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 2007, 104:7797-7802.
  • [2]Mo ML, Palsson BO: Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol 2009, 27:37-44.
  • [3]Lewis NE, Cho BK, Knight EM, Palsson BØ: Gene expression profiling and the use of genome-scale in silico models of Escherichia coli for analysis: providing context for content. J Bacteriol 2009, 191:3437-3444.
  • [4]Kim TY, Kim HU, Lee SY: Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab Eng 2010, 12:105-111.
  • [5]Jeong KJ, Jang SH, Velmurugan N: Recombinant antibodies: engineering and production in yeast and bacterial hosts. Biotechnol J 2011, 6:16-27.
  • [6]Mo ML, Palsson BO, Herrgard MJ: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009, 3:37. BioMed Central Full Text
  • [7]Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R, et al.: Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 2010, 28:1279-1285.
  • [8]Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 2007, 104:1777-1782.
  • [9]Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I: The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 2007, 3:135.
  • [10]Selvarasu S, Karimi IA, Ghim GH, Lee DY: Genome-scale modeling and in silico analysis of mouse cell metabolic network. Mol Biosyst 2010, 6:142-151.
  • [11]Doyle M, MacRae J, De Souza D, Saunders E, McConville M, Liki V: LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 2009, 3:57. BioMed Central Full Text
  • [12]David H, Ozcelik IS, Hofmann G, Nielsen J: Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 2008, 9:163. BioMed Central Full Text
  • [13]Andersen MR, Nielsen ML, Nielsen J: Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 2008, 4:178.
  • [14]Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004, 14:1298-1309.
  • [15]Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY: Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 2010, 5:705-715.
  • [16]Thiele I, Palsson BØ: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.
  • [17]Forster J, Famili I, Palsson BO, Nielsen J: Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 2003, 7:193-202.
  • [18]Zomorrodi A, Maranas C: Improving the iMM904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol 2010, 4:178. BioMed Central Full Text
  • [19]Park JM, Kim TY, Lee SY: Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses. Proc Natl Acad Sci U S A 2010, 107:14931-14936.
  • [20]Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, et al.: The genome sequence of Schizosaccharomyces pombe. Nature 2002, 415:871-880.
  • [21]Dragan CA, Peters FT, Bour P, Schwaninger AE, Schaan SM, Neunzig I, Widjaja M, Zapp J, Kraemer T, Maurer HH, Bureik M: Convenient gram-scale metabolite synthesis by engineered fission yeast strains expressing functional human P450 systems. Appl Biochem Biotechnol 2011, 163:965-980.
  • [22]Takegawa K, Tohda H, Sasaki M, Idiris A, Ohashi T, Mukaiyama H, Giga-Hama Y, Kumagai H: Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 2009, 53:227-235.
  • [23]Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G: Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2010, 28:617-623.
  • [24]Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006, 34:D354-D357.
  • [25]Hertz-Fowler C, Peacock CS, Wood V, Aslett M, Kerhornou A, Mooney P, Tivey A, Berriman M, Hall N, Rutherford K, et al.: GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 2004, 32:D339-D343.
  • [26]Aslett M, Wood V: Gene Ontology annotation status of the fission yeast genome: preliminary coverage approaches 100 %. Yeast 2006, 23:913-919.
  • [27]Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A, Sekido S, Kobayashi Y, Hashimoto A, Hamamoto M, Hiraoka Y: ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 2006, 24:841-847.
  • [28]Strijbis K, Distel B: Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 2010, 9:1809-1815.
  • [29]Jourdain I, Sontam D, Johnson C, Dillies C, Hyams JS: Dynamin-dependent biogenesis, cell cycle regulation and mitochondrial association of peroxisomes in fission yeast. Traffic 2008, 9:353-365.
  • [30]de Jong-Gubbels P, van Dijken JP, Pronk JT: Metabolic fluxes in chemostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol. Microbiology 1996, 142(Pt 6):1399-1407.
  • [31]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [32]Kumar VS, Maranas CD: GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 2009, 5:e1000308.
  • [33]Ren Q, Chen K, Paulsen IT: TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 2007, 35:D274-D279.
  • [34]Gombert AK, Nielsen J: Mathematical modelling of metabolism. Curr Opin Biotechnol 2000, 11:180-186.
  • [35]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60:3724-3731.
  • [36]Kim TY, Kim HU, Park JM, Song H, Kim JS, Lee SY: Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol Bioeng 2007, 97:657-671.
  文献评价指标  
  下载次数:29次 浏览次数:16次