期刊论文详细信息
BMC Genomics
The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years
Yusheng Zhao1  Jochen C Reif1  Peer Wilde3  Marlen Gottwald2  Thomas Miedaner4  Michael Florian Mette1  Yu Wang4 
[1] Leibniz Institute of Plant Breeding and Crop Plant Research (IPK), Gatersleben 06466, Germany;Syngenta Agro GmbH, Am Technologiepark 1-5, Maintal 63477, Germany;KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany;State Plant Breeding Institute, University of Hohenheim, Stuttgart 70599, Germany
关键词: Testing years;    Evaluation locations;    Relatedness;    Hybrid rye;    Cross-validation;    Genomic selection;    Marker-assisted selection;   
Others  :  855521
DOI  :  10.1186/1471-2164-15-556
 received in 2014-03-27, accepted in 2014-06-11,  发布年份 2014
PDF
【 摘 要 】

Background

Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data provide powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input.

Results

Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with 1048 molecular markers, we compared the accuracy of prediction of MAS and GS in a cross-validation approach. MAS delivered generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the estimation and test sets clearly affected the accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations, accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction based on an estimation set from one population to a test set from the other population was low despite that the two bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration models a sufficient number of test locations is of similar importance as extended testing for more than one year.

Conclusions

In hybrid rye, genomic selection is superior to marker-assisted selection. However, it achieves high accuracies of prediction only for selection candidates closely related to the plant material evaluated in field trials, resulting in a rather pessimistic prognosis for distantly related material. Both, the numbers of evaluation locations and testing years in trials contribute equally to prediction accuracy.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722034521348.pdf 448KB PDF download
72KB Image download
26KB Image download
79KB Image download
92KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lundqvist A: Self‒Incompatibility in rye. Hereditas 1956, 42(3–4):293-348.
  • [2]Voylokov A, Fuong F, Smirnov V: Genetic studies of self-fertility in rye (Secale cereale L.). 1. The identification of genotypes of self-fertile lines for the Sf alleles of self-incompatibility genes. Theor Appl Genet 1993, 87(5):616-618.
  • [3]Geiger H, Schnell F: Cytoplasmic male sterility in rye (Secale cereale L.). Crop Sci 1970, 10(5):590-593.
  • [4]Geiger H, Miedaner T: Hybrid rye and heterosis. In In The Genetics and Exploitation of Heterosis in Crops. Edited by JG Pandey S. America, Madison, Wisconsin, USA: Crop Science Society; 1999:439-450.
  • [5]Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC: Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 2012, 13(1):706.
  • [6]Bernardo R: Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 2008, 48(5):1649-1664.
  • [7]Heffner EL, Sorrells ME, Jannink J-L: Genomic selection for crop improvement. Crop Sci 2009, 49(1):1-12.
  • [8]Meuwissen THE, Hayes B, Goddard M: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157(4):1819-1829.
  • [9]Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92(2):433-443.
  • [10]Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön C-C: Genome-based prediction of testcross values in maize. Theor Appl Genet 2011, 123(2):339-350.
  • [11]Utz HF, Melchinger AE, Schön CC: Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 2000, 154(4):1839-1849.
  • [12]Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K: Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 Genes Genomes Genetics 2012, 2(11):1427-1436.
  • [13]Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC: Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 2012, 124(4):769-776.
  • [14]Heffner EL, Jannink J-L, Iwata H, Souza E, Sorrells ME: Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 2011, 51(6):2597-2606.
  • [15]Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M: Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 2012, 5(2):51-61.
  • [16]Heslot N, Yang H-P, Sorrells ME, Jannink J-L: Genomic selection in plant breeding: a comparison of models. Crop Sci 2012, 52(1):146-160.
  • [17]Zhong S, Dekkers JC, Fernando RL, Jannink J-L: Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 2009, 182(1):355-364.
  • [18]Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G: The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 2010, 42(1):5.
  • [19]Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA: The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010, 185(3):1021-1031.
  • [20]Zhao Y, Zeng J, Fernando R, Reif JC: Genomic prediction of hybrid wheat performance. Crop Sci 2013, 53(3):802-810.
  • [21]Jürgens H-U, Jansen G, Wegener CB: Characterisation of Several Rye Cultivars with Respect to Arabinoxylans and Extract Viscosity. J Agric Sci 2012, 4(5):1916-9752.
  • [22]Gilmour AR, Gogel B, Cullis B, Thompson R: ASReml user guide release 3.0. UK: VSN International Ltd, Hemel Hempstead; 2009.
  • [23]Piepho H-P, Möhring J: Computing heritability and selection response from unbalanced plant breeding trials. Genetics 2007, 177(3):1881-1888.
  • [24]Hill W, Robertson A: Linkage disequilibrium in finite populations. Theor Appl Genet 1968, 38(6):226-231.
  • [25]Utz H, Melchinger A: PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 1996, 2(1):1-5.
  • [26]Haley CS, Knott SA: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992, 69(4):315-324.
  • [27]Jansen RC, Stam P: High resolution of quantitative traits into multiple loci via interval mapping. Genetics 1994, 136(4):1447-1455.
  • [28]Zeng Z-B: Precision mapping of quantitative trait loci. Genetics 1994, 136(4):1457-1468.
  • [29]Whittaker IC, Thompson R, DENHAM MC: Marker-assisted selection using ridge regression. Genet Res 2000, 75(02):249-252.
  • [30]Hofheinz N, Borchardt D, Weissleder K, Frisch M: Genome-based prediction of test cross performance in two subsequent breeding cycles. Theor Appl Genet 2012, 125(8):1639-1645.
  • [31]Dekkers J: Prediction of response to marker‒assisted and genomic selection using selection index theory. J Anim Breed Genet 2007, 124(6):331-341.
  • [32]Lande R, Thompson R: Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990, 124(3):743-756.
  • [33]Guo Z, Tucker DM, Lu J, Kishore V, Gay G: Evaluation of genome-wide selection efficiency in maize nested association mapping populations. TAG Theoretical applied Genetics Theoretische und angewandte Genetik 2012, 124(2):261-275.
  • [34]Heffner EL, Jannink J-L, Sorrells ME: Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 2011, 4(1):65-75.
  • [35]Holland JB: Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. New Directions for a Diverse Planet: Proceedings for the 4th International Crop Science Congress Regional Institute, Gosford, Australia, www cropscience org au/icsc 2004 2004.
  • [36]Clark SA, Hickey JM, Daetwyler HD, Van Der Werf JH: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 2012, 44:4.
  • [37]Gowda M, Zhao Y, Würschum T, Longin CF, Miedaner T, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Martinant J: Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat. Heredity 2013, 112:552-561.
  • [38]Habier D, Fernando RL, Dekkers JC: The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177(4):2389-2397.
  • [39]Zhao Y, Gowda M, Longin FH, Würschum T, Ranc N, Reif JC: Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 2012, 125(4):707-713.
  • [40]Riedelsheimer C, Technow F, Melchinger AE: Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics 2012, 13(1):452.
  • [41]Solberg T, Sonesson A, Woolliams J: Genomic selection using different marker types and densities. J Anim Sci 2008, 86(10):2447-2454.
  • [42]Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön CC, Taudien S, Scholz U, Stein N, Mayer KF: From RNA-seq to large-scale genotyping-genomics resources for rye (Secale cereale L.). BMC Plant Biol 2011, 11(1):131.
  • [43]Meuwissen T: Accuracy of breeding values of ‘unrelated’individuals predicted by dense SNP genotyping. Genet Sel Evol 2009, 41:35.
  • [44]Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG, Okechukwu R, Dixon AG, Kulakow P, Jannink J-L: Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: a Study in Cassava. Crop Sci 2013, 53(4):1312-1325.
  • [45]Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP: Accessing genetic information with high-density DNA arrays. Science 1996, 274(5287):610-614.
  • [46]Gagneur J, Elze MC, Tresch A: Selective phenotyping, entropy reduction, and the mastermind game. BMC Bioinformatics 2011, 12(1):406.
  • [47]Kleinknecht K, Möhring J, Singh K, Zaidi P, Atlin G, Piepho H: Comparison of the Performance of Best Linear Unbiased Estimation and Best Linear Unbiased Prediction of Genotype Effects from Zoned Indian Maize Data. Crop Sci 2013, 53(4):1384-1391.
  文献评价指标  
  下载次数:9次 浏览次数:4次