BMC Genomics | |
Experimental evaluation does not reveal a direct effect of microRNA from the callipyge locus on DLK1 expression | |
Haruko Takeda2  Michel Georges2  Carole Charlier2  Noelle Cockett3  Tracy Hadfield3  Xuewen Xu1  Huijun Cheng1  | |
[1] Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China;Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l’Hôpital, 4000 Liège, Belgium;Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA | |
关键词: Reporter assay; Post-transcriptional gene regulation; Trans-effect; MicroRNA; DLK1; Polar overdominance; Muscle development; Callipyge; | |
Others : 1127804 DOI : 10.1186/1471-2164-15-944 |
|
received in 2014-06-15, accepted in 2014-10-16, 发布年份 2014 | |
【 摘 要 】
Background
Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed microRNAs (miRNAs) mapping to the imprinted DLK1-GTL2 domain are prime candidate mediators of this trans-effect.
Results
We have tested the affinity of 121 miRNAs processed from this locus for DLK1 by co-transfecting COS1 cells with a vector expressing the full-length ovine DLK1 with corresponding mimic miRNAs. None of the tested miRNAs was able to down regulate DLK1 to the extent observed in vivo.
Conclusions
This suggests that other factors, with or without these miRNAs, are involved in mediating the observed trans-effect.
【 授权许可】
2014 Cheng et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150221103307987.pdf | 466KB | download | |
Figure 1. | 92KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Cockett NE, Jackson SP, Shay TL, Farnir F, Berghmans S, Snowder GD, Nielsen DM, Georges M: Polar overdominance at the ovine callipyge locus. Science 1996, 273:236-238.
- [2]Lawson HA, Cheverud JM, Wolf JB: Genomic imprinting and parent-of-origin effects on complex traits. Nat Rev Genet 2013, 14:609-617.
- [3]Charlier C, Segers K, Karim L, Shay T, Gyapay G, Cockett N, Georges M: The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Nat Genet 2001, 27:367-369.
- [4]Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP: Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res 2002, 12:1496-1506.
- [5]Davis E, Jensen CH, Schroder HD, Farnir F, Shay-Hadfield T, Kliem A, Cockett N, Georges M, Charlier C: Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol 2004, 14:1858-1862.
- [6]Byrne K, Colgrave ML, Vuocolo T, Pearson R, Bidwell CA, Cockett NE, Lynn DJ, Fleming-Waddell JN, Tellam RL: The imprinted retrotransposon-like gene PEG11 (RTL1) is expressed as a full-length protein in skeletal muscle from Callipyge sheep. PLoS One 2010, 5:e8638.
- [7]Georges M, Charlier C, Cockett N: The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet 2003, 19:248-252.
- [8]Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M: Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res 2001, 11:850-862.
- [9]Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JA, Rogers J, Dunham I, Renfree MB, Ferguson-Smith AC, Savoir consortium: The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 2008, 6:e135.
- [10]Caiment F, Charlier C, Hadfield T, Cockett N, Georges M, Baurain D: Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res 2010, 20:1651-1662.
- [11]Davis E, Caiment F, Tordoir X, Cavaille J, Ferguson-Smith A, Cockett N, Georges M, Charlier C: RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 2005, 15:743-749.
- [12]Murphy SK, Freking BA, Smith TP, Leymaster K, Nolan CM, Wylie AA, Evans HK, Jirtle RL: Abnormal postnatal maintenance of elevated DLK1 transcript levels in callipyge sheep. Mamm Genome 2005, 16:171-183.
- [13]White JD, Vuocolo T, McDonagh M, Grounds MD, Harper GS, Cockett NE, Tellam R: Analysis of the callipyge phenotype through skeletal muscle development; association of Dlk1 with muscle precursor cells. Differentiation 2008, 76:283-298.
- [14]Vuocolo T, Cockett NE, Tellam RL: Expression of imprinted genes surrounding the callipyge mutation in ovine skeletal muscle. Aust J Exp Agric 2005, 45:879-892.
- [15]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91-105.
- [16]John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2:e363.
- [17]Takeda H, Charlier C, Farnir F, Georges M: Demonstrating polymorphic miRNA-mediated gene regulation in vivo: application to the g + 6223G- > A mutation of Texel sheep. RNA 2010, 16:1854-1863.
- [18]Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005, 122:553-563.
- [19]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
- [20]Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature 2008, 455:64-71.
- [21]Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58-63.
- [22]Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT: Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 2010, 40:939-953.
- [23]Bidwell CA, Waddell JN, Taxis TM, Yu H, Tellam RL, Neary MK, Cockett NE: New insights into polar overdominance in callipyge sheep. Anim Genet 2014, 45(Suppl 1):51-61.
- [24]Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324(5924):218-223.
- [25]Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 2010, 24:992-1009.
- [26]Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC: Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 2011, 21(2):203-215.
- [27]Griffiths-Jones S: The microRNA Registry. Nucleic Acids Res 2004, 32:D109-D111.
- [28]TargetScan custom [http://www.targetscan.org/vert_50/seedmatch.html webcite]
- [29]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120:15-20.
- [30]PhosphoSitePlus (DLK1) [http://www.phosphosite.org/proteinAction.do?id=21757&showAllSites=true webcite]
- [31]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989.
- [32]Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W: Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004, 14:708-715.
- [33]Shi W, Hendrix D, Levine M, Haley B: A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol 2009, 16:183-189.