期刊论文详细信息
BMC Evolutionary Biology
Taming the wild: resolving the gene pools of non-model Arabidopsis lineages
Marcus A Koch4  Karol Marhold2  Filip Kolář5  Magdalena Lučanová5  Tzen-Yuh Chiang3  Roswitha Schmickl1  Nora Hohmann4 
[1] Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice CZ-25243, Czech Republic;Institute of Botany Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-845 23, Slovakia;Department of Life Sciences, Cheng-Kung University, Tainan, Taiwan;Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg 69120, Germany;Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague CZ-128 01, Czech Republic
关键词: Taxonomy;    Systematics;    Microsatellites;    ITS;    Evolution;    Cytology;    Chloroplast;   
Others  :  1117857
DOI  :  10.1186/s12862-014-0224-x
 received in 2014-06-27, accepted in 2014-10-15,  发布年份 2014
PDF
【 摘 要 】

Background

Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses.

Results

Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins.

Conclusions

Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.

【 授权许可】

   
2014 Hohmann et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206011131693.pdf 1987KB PDF download
Figure 6. 119KB Image download
Figure 5. 59KB Image download
Figure 4. 82KB Image download
Figure 3. 34KB Image download
Figure 2. 32KB Image download
Figure 1. 167KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Clauss M, Koch MA: Arabidopsis and its poorly known relatives. Trends Pl Sci 2006, 11:449-459.
  • [2]Al-Shehbaz IA, O’Kane SL, Price RA: Generic placement of species excluded from Arabidopsis. Novon 1999, 9:296-307.
  • [3]Al-Shehbaz IA, O’Kane SL: Taxonomy and phylogeny ofArabidopsis(Brassicaceae). In The Arabidopsis Book 2002, Volume 1. Edited by Torii K. The American Society of Plant Biologists; 2002:e0001. doi:10.1199/tab.0001.
  • [4]Koch M, Bishop J, Mitchell-Olds T: Molecular systematics and evolution of Arabidopsis and Arabis. Pl Biol 1999, 1:529-537.
  • [5]Koch MA, Haubold B, Mitchell-Olds T: Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 2000, 17:1483-1498.
  • [6]Koch MA, Haubold B, Mitchell-Olds T: Molecular systematics of the Brassicaceae: evidence from coding plastidic MATK and nuclear CHS sequences. Am J Bot 2001, 88:534-544.
  • [7]Karl R, Koch MA: A world-wide perspective on crucifer speciation and evolution: phylogeny, biogeography and trait evolution in tribe Arabideae. Ann Bot 2013, 112:983-1001.
  • [8]O’Kane SL, Al-Shehbaz IA: A synopsis of Arabidopsis (Brassicaceae). Novon 1997, 7:323-327.
  • [9]O’Kane SL, Al-Shehbaz IA: Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard 2003, 90:603-612.
  • [10]Warwick SI, Al-Shehbaz IA, Sauder CA: Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 2006, 84:269-281.
  • [11]Kadota Y: Arabidopsis umezawana (Brassicaceae), a new species from Mt. Rishirizan, Rishiri Island, Hokkaido, Northern Japan. J Jpn Bot 2007, 82:232-237.
  • [12]Dorofeyev VI: Cruciferae of European Russia. Turczaninowia 2002, 5:5-114.
  • [13]Marhold K, Perný M, Kolník M: Miscellaneous validations in Cruciferae and Crassulaceae. Willdenowia 2003, 33:69-70.
  • [14]Shimizu KK, Fujii S, Marhold K, Watanabe K, Kudoh H: Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot 2005, 56:163-172.
  • [15]Kolnik M, Marhold K: Distribution, chromosome numbers and nomenclature conspect of Arabidopsis halleri (Brassicaceae) in theCarpathians. Biologia (Bratislava) 2006, 61:41-50.
  • [16]Iljinska A, Didukh Y, Burda R, Korotschenko I: Ecoflora of Ukraine. Phytosociocentre Press, Kyiv; 2007.
  • [17]Elven DR, Murray J: New combinations in the Panarctic vascular plant flora. J Bot Res Inst Texas 2008, 2:433-438.
  • [18]Koch MA, Wernisch M, Schmickl R: Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 2008, 57:933-943.
  • [19]Schmickl R, Paule J, Klein J, Marhold K, Koch MA: The evolutionary history of the Arabidopsis arenosa species complex: Highly diverse tetraploids mask that the Western Carpathians are the center of species and genetic diversity. PLoS One 2012, 7:e42691.
  • [20]Koch MA, Kiefer M, German D, Al-Shehbaz IA, Franzke A, Mummenhoff K: BrassiBase: tools and biological resources to study characters and traits in the Brassicaceae – version 1.1. TAXON 2012, 61:1001-1009.
  • [21]Koch MA, German D: Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers Pl Science 2013, 4:e267.
  • [22]Koch MA, Matschinger M: Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007, 104:6272-6277.
  • [23]Castric V, Bechsgaard J, Schierup MH, Vekemans X: Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet 2008, 4:e1000168.
  • [24]Säll T, Jakobsson M, Lind-Halldén C, Halldén C: Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 2003, 16:1019-1029.
  • [25]Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M: A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol Biol Evol 2006, 23:1217-1231.
  • [26]Schmickl R, Jørgensen MH, Brysting AK, Koch MA: Phylogeographic implications for the North American boreal-arctic Arabidopsis lyrata complex. Plant Ecol Div 2008, 1:245-254.
  • [27]Schmickl R, Jorgenson M, Brysting A, Koch MA: The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 2010, 10:e98. BioMed Central Full Text
  • [28]Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K, Yakubov VV, Shimizu KK: The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol 2009, 18:4024-4048.
  • [29]Schmickl R, Koch MA: Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A 2011, 108:14192-14197.
  • [30]Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I: Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in Central Europe: the cpDNA testimony. Molec Ecol 2005, 14:4403-4414.
  • [31]Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saimitou-Laprade P: Nuclear and chloroplast DNA phy logeography reveals vicariance among European popula tions of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytol 2012, 193:916-928.
  • [32]Tedder A, Hoebe PN, Ansell SK, Mable BK: Using chloroplast genes for phylogeography in Arabidopsis lyrata. Diversity 2010, 2:653-678.
  • [33]Hoebe PN, Stift M, Tedder A, Mable BK: Multiple losses of self-incompatibility in North-American Arabidopsis lyrata? Phylogeographic context and population genetic consequences. Mol Ecol 2009, 18:4294-4939.
  • [34]Clauss M, Mitchell-Olds T: Population genetic structure of Arabidopsis lyrata in Europe. Mol Ecol 2006, 15:2753-2766.
  • [35]Kuittinen H, Niittyvuopio A, Rinne P, Savolainen O: Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol 2008, 25:319-329.
  • [36]Muller MH, Leppälä J, Savolainen O: Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 2008, 100:47-58.
  • [37]Riihimäki M, Podolsky R, Kuittinen H, Koelewijn H, Savolainen O: Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica 2005, 123:63-74.
  • [38]Leinonen PH, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T, Agren J, Savolainen O: Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 2009, 96:1129-1137.
  • [39]Turner TL, Von Wettberg EJ, Nuzhdin SV: Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One 2008, 3:e3183.
  • [40]Savolainen O, Kuittinen H: Arabidopsis lyratagenetics. In Genetics and Genomics of the Brassicaceae. Edited by Bancroft I, Schmidt R. New York: Springer Verlag; 2011:347–372.
  • [41]Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B: Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 2000, 12:1551-1568.
  • [42]Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L: Genomic changes in synthetic Arabidopsis polyploids. Plant J 2005, 41:221-230.
  • [43]Hollister J, Arnold B, Svedin E, Xue K, Dilkes B, Bomblies K: Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 2012, 8:e1003093.
  • [44]Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K: Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 2013, 23:2151-2156.
  • [45]Hunter B, Bomblies K: Progress and promise in usingArabidopsisto study adaptation, divergence and speciation. In The Arabidopsis Book 2010, Volume 8. Edited by Torii K. Rockville, MD: American Society of Plant Biologists; 2010:e0138.
  • [46]Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL: The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 2011, 43:476-481.
  • [47]Koch M, Dobes C, Mitchell-Olds T: Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 2003, 20:338-350.
  • [48]Jorgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting A: Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol Biol 2011, 11:e346. BioMed Central Full Text
  • [49]Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS: Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 2008, 3:e2411.
  • [50]Mable BK, Schierup MH, Charlesworth D: Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity 2003, 90:422-431.
  • [51]Mable BK, Robertson AV, Dart S, DiBerardo C, Witham L: Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 2005, 59:1437-1448.
  • [52]Roux C, Pauwels M, Ruggiero MV, Charlesworth D, Castric V, Vekemans X: Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and Arabidopsis lyrata. Mol Biol Evol 2013, 30:435-447.
  • [53]Měsíček J: Chromosome counts in Cardaminopsis arenosa agg. (Cruciferae). Preslia 1970, 42:225-248.
  • [54]Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK: Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012, 8:e1002838.
  • [55]Koch M, Mummenhoff K, Hurka H: Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochem Syst Ecol 1998, 26:823-838.
  • [56]Roux C, Castric V, Pauwels M, Wright SI, Saumitou-Laprade P, Vekemans X: Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS One 2011, 6:e26872.
  • [57]Hayek A: Flora von Steiermark. Berlin: Verlag von Gebrüder Bornträger; 1908–1914
  • [58]Měsíček J: Cardaminopsis. In Zoznam nižších a vyšších rastlín Slovenska – Checklist of non-vascular and vascular plants of Slovakia. Edited by Marhold K, Hindák F. VEDA, Bratislava; 1998:395-396.
  • [59]Kolník M: Arabidopsis. In Chromosome number Survey of The Ferns and Flowering Plants of Slovakia. Edited by Marhold K, Mártonfi P, Mereda P Jr, Mráz P. VEDA, Bratislava; 2012:94-102.
  • [60]Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M: A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Molec Biol Evol 2006, 23:1217-1231.
  • [61]Schmuths H, Meister A, Horres R, Bachmann K: Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 2004, 93:317-321.
  • [62]Johnston SP, Pepper AE, Hall AE, Chen ZF, Hodnett G, Drabek J, Lopez R, Price HJ: Evolution of genome size in Brassicaceae. Ann Bot 2005, 95:229-235.
  • [63]Lysak MA, Koch MA, Leitch IJ, Beaulieau JM, Meister A: The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 2009, 26:85-98.
  • [64]Wolf DE, Steets JA, Houliston GJ, Takebayashi N: Genome size variation and evolution in a allotetraploidArabidopsis kamchaticaand its parents,Arabidopsis lyrataandArabidopsis halleri.AoB PLANTS 2014, 6: doi:10.1093/aobpla/plu025.
  • [65]Dart S, Kron P, Mable BK: Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Canad J Bot 2004, 82:185-197.
  • [66]Jørgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting AK: Interspecific and interploidal gene flow in central european Arabidopsis (Brassicaceae). BMC Evol Biol 2011, 11:e346. BioMed Central Full Text
  • [67]Al-Shebaz IA: Arabidopsis. In Flora of North America. Oxford University Press, Oxford; 2010:447-449.
  • [68]Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 1987, 19:11-15.
  • [69]Dobeš CH, Mitchell-Olds T, Koch MA: Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. x divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 2004, 13:349-370.
  • [70]Dobes C, Mitchell-Olds T, Koch M: Intraspecific diversification in North American Arabis drummondii, A. ×divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. Am J Bot 2004, 91:2087-2101.
  • [71]Clauss MJ, Cobban H, Mitchell-Olds T: Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol Ecol 2002, 11:591-601.
  • [72]Doležel J, Greilhuber J, Suda J: Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2007, 2:2233-2244.
  • [73]Temsch EM, Greilhuber J, Krisai R: Genome size in liverworts. Preslia 2010, 82:63-80.
  • [74]Doležel J, Bartoš J: Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 2005, 95:99-110.
  • [75]R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
  • [76]Dolezel J, Sgorbati S, Lucretti S: Comparison of three fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum 1992, 85:625-631.
  • [77]Kiefer M, Schmickl R, German D, Lysak M, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA: BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol 2014, 55:e3.
  • [78]Koch MA, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T: Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 2005, 22:1032-1043.
  • [79]Dobeš C, Kiefer C, Kiefer M, Koch MA: Plastidic trnFUUC pseudogenes in North American genus Boechera (Brassicaceae): mechanistic aspects of evolution. Plant Biol 2007, 9:502-515.
  • [80]Koch MA, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak MA: Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 2007, 24:63-73.
  • [81]Schmickl R, Kiefer C, Dobeš C, Koch MA: Evolution oftrnF(GAA) pseudogenes in cruciferous plants.Plant Syst Evol 2008, [doi:10.1007/s00606-008-0030-2]
  • [82]Müller K, Quandt D, Müller J, Neinhuis C: PhyDE, Version 0.92: Phylogenetic Data Editor. 2005.
  • [83]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [84]Templeton AR, Crandall KA, Sing CF: A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132:619-633.
  • [85]Stamatakis A: RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics 2014, doi:10.1093/bioinformatics/btu033.
  • [86]Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, MA; 2002.
  • [87]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
  • [88]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Eco Res 2010, 10:564-567.
  • [89]Nei M: Molecular Evolutionary Genetics. Columbia University Press, New York; 1987.
  • [90]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [91]Hubisz M, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Molec Ecol Res 2009, 9:1322-1332.
  • [92]Ehrich D: AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 2006, 6:603-604.
  • [93]Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW: Genetic structure of human populations. Science 2002, 298:2381-2385.
  • [94]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [95]Earl DA, vonHoldt BM: Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Cons Genet Res 2012, 4:359-361.
  • [96]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [97]Rosenberg NA: Documentation for Distruct Software: Version 1.1. University of Michigan, Michigan; 2007.
  • [98]Mable BK, Beland J, Di Berardo C: Inheritance and dominance of self-incompatibility alleles in polyploid Arabidopsis lyrata. Heredity 2004, 93:476-486.
  • [99]Säll T, Lind-Halldén C, Jakobsson M, Halldén C: Mode of reproduction in Arabidopsis suecica. Hereditas 2004, 141:313-317.
  文献评价指标  
  下载次数:22次 浏览次数:12次