期刊论文详细信息
BMC Genomics
Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads
Wen Fury1  Yi Wei1  Blerta Cooper1  Min Ni1  Yu Bai1 
[1]Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
关键词: Human genetics;    Immunoncology;    Autoimmune disease;    Hematopoietic transplantation;    Whole genome sequencing;    Exome sequencing;    Transcriptome sequencing;    HLA typing;   
Others  :  1217334
DOI  :  10.1186/1471-2164-15-325
 received in 2013-11-15, accepted in 2014-04-04,  发布年份 2014
PDF
【 摘 要 】

Background

Accurate HLA typing at amino acid level (four-digit resolution) is critical in hematopoietic and organ transplantations, pathogenesis studies of autoimmune and infectious diseases, as well as the development of immunoncology therapies. With the rapid adoption of genome-wide sequencing in biomedical research, HLA typing based on transcriptome and whole exome/genome sequencing data becomes increasingly attractive due to its high throughput and convenience. However, unlike targeted amplicon sequencing, genome-wide sequencing often employs a reduced read length and coverage that impose great challenges in resolving the highly homologous HLA alleles. Though several algorithms exist and have been applied to four-digit typing, some deliver low to moderate accuracies, some output ambiguous predictions. Moreover, few methods suit diverse read lengths and depths, and both RNA and DNA sequencing inputs. New algorithms are therefore needed to leverage the accuracy and flexibility of HLA typing at high resolution using genome-wide sequencing data.

Results

We have developed a new algorithm named PHLAT to discover the most probable pair of HLA alleles at four-digit resolution or higher, via a unique integration of a candidate allele selection and a likelihood scoring. Over a comprehensive set of benchmarking data (a total of 768 HLA alleles) from both RNA and DNA sequencing and with a broad range of read lengths and coverage, PHLAT consistently achieves a high accuracy at four-digit (92%-95%) and two-digit resolutions (96%-99%), outcompeting most of the existing methods. It also supports targeted amplicon sequencing data from Illumina Miseq.

Conclusions

PHLAT significantly leverages the accuracy and flexibility of high resolution HLA typing based on genome-wide sequencing data. It may benefit both basic and applied research in immunology and related fields as well as numerous clinical applications.

【 授权许可】

   
2014 Bai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706054905218.pdf 952KB PDF download
Figure 2. 65KB Image download
Figure 2. 47KB Image download
Figure 1. 75KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 2.

【 参考文献 】
  • [1]Choo SY: The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J 2007, 48(1):11-23.
  • [2]Sullivan LC, Clements CS, Rossjohn J, Brooks AG: The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity. Tissue Antigens 2008, 72(5):415-424.
  • [3]Algarra I, Cabrera T, Garrido F: The HLA crossroad in tumor immunology. Hum Immunol 2000, 61(1):65-73.
  • [4]Park M, Seo JJ: Role of HLA in Hematopoietic Stem Cell Transplantation. Bone Marrow Res 2012, 2012:680841.
  • [5]Eng HS, Leffell MS: Histocompatibility testing after fifty years of transplantation. J Immunol Methods 2011, 369(1–2):1-21.
  • [6]Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, Williams A, Beck S, Kyogoku C, Moser K, Gaffney P, Gregersen PK, Criswell LA, Harley JB, Behrens TW: Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet 2007, 15(8):823-830.
  • [7]Fu SM, Deshmukh US, Gaskin F: Pathogenesis of systemic lupus erythematosus revisited 2011: end organ resistance to damage, autoantibody initiation and diversification, and HLA-DR. J Autoimmun 2011, 37(2):104-112.
  • [8]Cassinotti A, Birindelli S, Clerici M, Trabattoni D, Lazzaroni M, Ardizzone S, Colombo R, Rossi E, Porro GB: HLA and autoimmune digestive disease: a clinically oriented review for gastroenterologists. Am J Gastroenterol 2009, 104(1):195-217. quiz 194, 218
  • [9]Luckey D, Bastakoty D, Mangalam AK: Role of HLA class II genes in susceptibility and resistance to multiple sclerosis: studies using HLA transgenic mice. J Autoimmun 2011, 37(2):122-128.
  • [10]Lemire M: On the association between rheumatoid arthritis and classical HLA class I and class II alleles predicted from single-nucleotide polymorphism data. BMC Proc 2009, 7(3):S33.
  • [11]Noble JA, Valdes AM: Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 2011, 11(6):533-542.
  • [12]Chaudhuri S, Cariappa A, Tang M, Bell D, Haber DA, Isselbacher KJ, Finkelstein D, Forcione D, Pillai S: Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may represent protective alleles. Proc Natl Acad Sci U S A 2000, 97(21):11451-11454.
  • [13]Garcia-Corona C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusho JK, Rodriguez-Carreon AA, Ruiz-Morales JA, Salgado N, Granados J: Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 2004, 140(10):1227-1231.
  • [14]del Campo AB, Carretero J, Aptsiauri N, Garrido F: Targeting HLA class I expression to increase tumor immunogenicity. Tissue Antigens 2012, 79(3):147-154.
  • [15]Nagorsen D, Thiel E: HLA typing demands for peptide-based anti-cancer vaccine. Cancer Immunol Immunother 2008, 57(12):1903-1910.
  • [16]Archbold JK, Macdonald WA, Burrows SR, Rossjohn J, McCluskey J: T-cell allorecognition: a case of mistaken identity or deja vu? Trends Immunol 2008, 29(5):220-226.
  • [17]Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, Burrows JM, Kjer-Nielsen L, Kostenko L, Purcell AW, McCluskey J, Rossjohn J: T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide. Nat Immunol 2005, 6(11):1114-1122.
  • [18]Fleischhauer K, Kernan NA, O'Reilly RJ, Dupont B, Yang SY: Bone marrow-allograft rejection by T lymphocytes recognizing a single amino acid difference in HLA-B44. N Engl J Med 1990, 323(26):1818-1822.
  • [19]Liao C, Wu JY, Xu ZP, Li Y, Yang X, Chen JS, Tang XW, Gu SL, Huang YN, Tang PH, Tsang KS: Indiscernible benefit of high-resolution HLA typing in improving long-term clinical outcome of unrelated umbilical cord blood transplant. Bone Marrow Transplant 2007, 40(3):201-208.
  • [20]Gibert M, Balandraud N, Touinssi M, Mercier P, Roudier J, Reviron D: Functional categorization of HLA-DRB1 alleles in rheumatoid arthritis: the protective effect. Hum Immunol 2003, 64(10):930-935.
  • [21]Carlson JM, Listgarten J, Pfeifer N, Tan V, Kadie C, Walker BD, Ndung'u T, Shapiro R, Frater J, Brumme ZL, Goulder PJ, Heckerman D: Widespread impact of HLA restriction on immune control and escape pathways of HIV-1. J Virol 2012, 86(9):5230-5243.
  • [22]Lefranc MP, Giudicelli V, Ginestoux C, Bodmer J, Müller W, Bontrop R, Lemaitre M, Malik A, Barbié V, Chaume D: IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 1999, 27(1):209-212.
  • [23]Erlich H: HLA DNA typing: past, present, and future. Tissue Antigens 2012, 80(1):1-11.
  • [24]Dunn PP: Human leucocyte antigen typing: techniques and technology, a critical appraisal. Int J Immunogenet 2011, 38(6):463-473.
  • [25]Danzer M, Niklas N, Stabentheiner S, Hofer K, Proll J, Stuckler C, Raml E, Polin H, Gabriel C: Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics 2013, 14:221. BioMed Central Full Text
  • [26]Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, Gupta N, DePristo MA, Henn MR, Lennon NJ, de Bakker PI: Next-generation sequencing for HLA typing of class I loci. BMC Genomics 2011, 12:42. BioMed Central Full Text
  • [27]Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, Levinson D, Fernandez-Vina MA, Davis RW, Davis MM, Mindrinos M: High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci U S A 2012, 109(22):8676-8681.
  • [28]Boegel S, Lower M, Schafer M, Bukur T, de Graaf J, Boisguerin V, Tureci O, Diken M, Castle JC, Sahin U: HLA typing from RNA-Seq sequence reads. Genome Med 2013, 4(12):102.
  • [29]Kim HJ, Pourmand N: HLA haplotyping from RNA-seq data using hierarchical read weighting. PLoS One 2013, 8(6):e67885.
  • [30]Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, Holt RA: Derivation of HLA types from shotgun sequence datasets. Genome Med 2012, 4(12):95. BioMed Central Full Text
  • [31]Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, Pfeifer JD: ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res 2013, 41(14):e142.
  • [32]Major E, Rigó K, Hague T, Bérces A, Juhos S: HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data. PLoS One 2013, 8(11):e78410.
  • [33]Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation from population-scale sequencing. Nature 2010, 467(7319):1061-1073.
  • [34]de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X, Monsuur AJ, Whittaker P, Delgado M, Morrison J, Richardson A, Walsh EC, Gao X, Galver L, Hart J, Hafler DA, Pericak-Vance M, Todd JA, Daly MJ, Trowsdale J, Wijmenga C, Vyse TJ, Beck S, Murray SS, Carrington M, Gregory S, Deloukas P, Rioux JD: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 2006, 38(10):1166-1172.
  • [35]Lappalainen T, Sammeth M, Friedlander MR, Hoen PA T, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H: Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501(7468):506-511.
  • [36]Schroth GP: RNA-Seq of human individual tissues and mixture of 16 tissues (Illumina Body Map). accession number E-MTAB-513: Array Express database; 2011. http://wwwebiacuk/arrayexpress/experiments/E-MTAB-513/ webcite
  • [37]Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan S, Bridge J, Magazine H, Syron J, Fleming J, Siminoff L, Traino H, Mosavel M, Barker L, Jewell S, Rohrer D, Maxim D, Filkins D, Harbach P, Cortadillo E: The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013, 45(6):580-585.
  • [38]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [39]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [40]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20(9):1297-1303.
  • [41]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [42]Middleton D, Menchaca L, Rood H, Komerofsky R: New allele frequency database. Tissue Antigens 2003, 61(5):403-407. http://www.allelefrequencies.net webcite
  • [43]Lo K, Raftery AE, Dombek KM, Zhu J, Schadt EE, Bumgarner RE, Yeung KY: Integrating external biological knowledge in the construction of regulatory networks from time-series expression data. BMC Syst Biol 2012, 6:101. BioMed Central Full Text
  • [44]Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, Sachs JR, Schadt EE: Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 2007, 3(4):e69.
  • [45]Chen WW, Yang JS, Shakhnovich EI: A knowledge-based move set for protein folding. Proteins 2007, 66(3):682-688.
  • [46]Koehler R, Issac H, Cloonan N, Grimmond SM: The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics 2011, 27(2):272-274.
  • [47]Kim HJ, Pourmand N, hlaforest, HLA haplotyping from NGS/HTS sequencing data: HLAforest project website. 2013. http://code.google.com/p/hlaforest/ webcite
  • [48]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [49]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  文献评价指标  
  下载次数:14次 浏览次数:23次