BMC Microbiology | |
Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains | |
Michael Kokkinidis4  Nicholas J Panopoulos1  Nikolaos Mathioudakis1  Spyridoula N Charova1  Vasiliki E Fadouloglou2  Panagiotis F Sarris3  Anastasia D Gazi5  | |
[1] Department of Biology, University of Crete, Vasilika Vouton, P.O. Box 2208, Heraklion, Crete GR 71409, Greece;Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR 68100, Greece;School of Medicine, University of Crete, Vasilika Vouton, Heraklion, Crete, GR 71409, Greece;Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology, Vasilika Vouton, Heraklion, Crete GR 71110, Greece;Institute Pasteur, 28 rue du Docteur Roux, Paris, 75015, France | |
关键词: RT-PCR; Evolutionary relationships; Common ancestry; Horizontal transfer events; Gene organization; Pathogenicity; Phylogenetic analysis; Rhizobium Type III secretion system; Pseudomonas syringae; Hrc1Type III secretion system; | |
Others : 1221776 DOI : 10.1186/1471-2180-12-188 |
|
received in 2012-05-14, accepted in 2012-08-21, 发布年份 2012 | |
【 摘 要 】
Background
The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs.
Results
Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments.
Conclusions
The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.
【 授权许可】
2012 Gazi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150803154751940.pdf | 3117KB | download | |
Figure 5. | 61KB | Image | download |
Figure 4. | 134KB | Image | download |
Figure 3. | 40KB | Image | download |
Figure 2. | 108KB | Image | download |
Figure 1. | 128KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP: Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 2006, 62(2):308-319.
- [2]Tseng T-T, Tyler BM, Setubal JC: Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009, 9(Suppl 1):S2. BioMed Central Full Text
- [3]Cascales E, Christie PJ: The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003, 1(2):137-149.
- [4]Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006, 4:811-825.
- [5]Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M: Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications. Cell Microbiol 2009, 11(5):719-729.
- [6]Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panopoulos NJ: Playing the “Harp”: evolution of our understanding of hrp/hrc Genes. Annu Rev Phytopathol 2010, 17:347-370.
- [7]Tampakaki AP, Fadouloglou VE, Gazi AD, Panopoulos NJ, Kokkinidis M: Conserved features of type III secretion. Cell Microbiol 2004, 6(9):805-816.
- [8]Troisfontaines P, Cornelis GR: Type III secretion: more systems than you think. Physiol 2005, 20:326-339.
- [9]Gophna U, Ron EZ, Graur D: Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 2003, 312:151-163.
- [10]Altschul SF, Madden TL, Schffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 1997, 25(17):3389-3402.
- [11]Prilusky J, Felder CE, Zeev-Ben Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman IJ, Prilusky J, Felder CE, Zeev-Ben Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman IJLS: FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinf 2005, 21:3435-3438.
- [12]Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292(2):195-202.
- [13]Handbook. Totowa, New Jersey: Humana Press; 2005.
- [14]Lupas A, Van Dyke M, Stock J: Predicting coiled coils from protein sequences. Science 1991, 252:1162-1164.
- [15]Fischetti VA, Landau GM, Schmidt JP, Sellers P: Identifying periodic occurences of a template with applications to protein structure. Inform Process Let 1993, 45:11-18.
- [16]Kelley LA, MacCallum RM, Sternberg MJE: Enhanced genome annotation with structural profiles in the program 3D-PSSM. J Mol Biol 2000, 299:499-500.
- [17]McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinfor 2000, 16:404-405.
- [18]Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorhism data. Bioinfor 2009, 25:1451-1452.
- [19]Thompson JD, Higgins DG, Gibson TJ: ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position, specific gap penalties, and weight matrix choice. Nucleic Acid Res 1994, 22:4673-4680.
- [20]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
- [21]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
- [22]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39(4):783-791.
- [23]Zuckerkandl E, Pauling L: Evolutionary divergence and convergence in proteins. New York: Academic; 1965.
- [24]Rahme LG, Mindrinos MN, Panopoulos NJ: Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol 1992, 174(11):3499-3507.
- [25]Rijpensa N, Jannesb G, Hermana L: Messenger RNA-based RT-PCR detection of viable Salmonella. Intern Diary J 2002, 12:233-238.
- [26]Hueck CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998, 62(2):379-433.
- [27]Xiao Y, Hutcheson SW: A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 1994, 176(10):3089-3091.
- [28]Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X: Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 1998, 28(6):1381-1389.
- [29]Krause A, Doerfel A, Göttfert M: Mutational and Transcriptional Analysis of the Type III Secretion System of Bradyrhizobium japonicum. MPMI 2002, 15(12):1228-1235.
- [30]Kovács LG, Balatti PA, Krishnan HB, Pueppke SG: Transcriptional organisation and expression of nolXWBTUV, a locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol 1995, 17:923-933.
- [31]Fadouloglou VE, Tampakaki AP, Glykos NM, Bastaki MN, Hadden JM, Phillips SE, Panopoulos NJ, Kokkinidis M: Structure of HrcQB-C, a concerved component of the bacterial type III secretion systems. Proc Natl Acad Sci USA 2004, 101:70-75.
- [32]Fadouloglou VE, Bastaki MN, Ashcroft AE, Phillips SEV, Panopoulos NJ, Glykos NM, Kokkinidis M: On the quaternary association of the type III secretion system HrcQB-C protein: experimental evidence differentiates among the various oligomerization models. J Struct Biol 2009, 166(2):214-225.
- [33]Gazi AD, Bastaki M, Charova SN, Gkougkoulia EA, Kapellios EA, Panopoulos NJ, Kokkinidis M: Evidence for a coiled-coil interaction mode of disordered proteins from bacterial type III secretion systems. J Biol Chem 2008, 283(49):34062-34068.
- [34]Pallen MJ, Beatson SA, Bailey CM: Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 2005, 5:9. BioMed Central Full Text
- [35]Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X: Molecular basis of symbiosis between Rhizobium and legumes. Nat 1997, 387:394-401.
- [36]Marie C, Broughton WJ, Deakin WJ: Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 2001, 4(4):336-342.
- [37]González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, et al.: The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Gen Biol 2003, 4(6):R36. BioMed Central Full Text
- [38]Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, et al.: Rhizobium sp. Strain NGR234 Possesses a Remarkable Number of Secretion Systems. Appl Environ Microbiol 2009, 75(12):4035-4045.
- [39]Petnicki-Ocwiega T, van Dijk K, Alfano JR: The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J Bacteriol 2005, 187:649-663.
- [40]Day JB, Plano GV: The Yersinia pestis YscY Protein Directly Binds YscX, a Secreted Component of the Type III Secretion Machinery. J Bacteriol 2000, 182(7):1834-1843.
- [41]Duderstadt KE, Berger JM: AAA + ATPases in the Initiation of DNA Replication. Crit Rev Biochem Mol Biol 2008, 43:163-187.
- [42]Pallen MJ, Francis MS, Futterer K: Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol Lett 2003, 223:53-60.
- [43]Darwin KH, Miller VL: Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J 2001, 20:1850-1862.
- [44]Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, DeBoy R, Durkin AS, Giglio MG, et al.: Whole-Genome Sequence Analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 2005, 187(18):6488-6498.
- [45]Sawada H, Suzuki F, Matsuda I, Saitou N: Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 1999, 49:627-644.
- [46]Ettema TJG, Andersson SGE: The α-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 2009, 5:391-393.
- [47]Fauvart M, Michiels J: Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 2008, 285:1-9.
- [48]Beattie GA, Lindow SE: Bacterial colonization of leaves: a spectrum of Strategies. Phytopathol 1999, 89(5):353-359.
- [49]Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JH: Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 2006, 60:425-449.
- [50]He SY: Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 1998, 36:363-392.
- [51]Hirano SS, Upper CD: Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte. Microbiol Mol Biol Rev 2000, 64:624-653.
- [52]Lindeberg M, Myers CR, Collmer A, Schneider DJ: Roadmap to new virulence determinants in Pseudomonas syringae: Insights from comparative genomics and genome organization. Mol Plant Microbiol Inter 2008, 21:685-700.
- [53]da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, et al.: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417:459-463.
- [54]Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, et al.: Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 2010, 5(4):e10224.
- [55]Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada J, et al.: Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 2010, 12(6):1604-1620.
- [56]Qi M, Wang D, Bradley CA, Zhao Y: Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011, 6(1):e16451.
- [57]Huynh TV, Dahlbeck D, Staskawicz BJ: Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 1989, 245(4924):1374-1377.
- [58]Clarke CR, Cai R, Studholme DJ, Guttman DS, Vinatzer BA: Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc Locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 2010, 23(2):198-210.
- [59]Records AR, Gross DC: Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010, 192(14):3584-3596.
- [60]Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ: Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 2007, 9(7):797-803.
- [61]Lesic B, Starkey M, He J, Hazan R, Rahme LG: Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 2009, 155(Pt 9):2845-2855.
- [62]He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG: The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 2004, 101:2530-2535.
- [63]Fall S, Mercier A, Bertolla F, Calteau A, Gueguen L, Perŗi G, Vogel TM, Simonet P: Horizontal Gene Transfer Regulation in Bacteria as a β€ Spandrel β€ of DNA Repair Mechanisms. PLoS One 2007, 2(10):e1055.
- [64]Youssef YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, et al.: Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 1997, 194:99-114.
- [65]Peng G, Yuan Q, Li H, Zhang W, Tan Z: Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008, 58:2158-2163.