期刊论文详细信息
BMC Microbiology
Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains
Michael Kokkinidis4  Nicholas J Panopoulos1  Nikolaos Mathioudakis1  Spyridoula N Charova1  Vasiliki E Fadouloglou2  Panagiotis F Sarris3  Anastasia D Gazi5 
[1] Department of Biology, University of Crete, Vasilika Vouton, P.O. Box 2208, Heraklion, Crete GR 71409, Greece;Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, GR 68100, Greece;School of Medicine, University of Crete, Vasilika Vouton, Heraklion, Crete, GR 71409, Greece;Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology, Vasilika Vouton, Heraklion, Crete GR 71110, Greece;Institute Pasteur, 28 rue du Docteur Roux, Paris, 75015, France
关键词: RT-PCR;    Evolutionary relationships;    Common ancestry;    Horizontal transfer events;    Gene organization;    Pathogenicity;    Phylogenetic analysis;    Rhizobium Type III secretion system;    Pseudomonas syringae;    Hrc1Type III secretion system;   
Others  :  1221776
DOI  :  10.1186/1471-2180-12-188
 received in 2012-05-14, accepted in 2012-08-21,  发布年份 2012
PDF
【 摘 要 】

Background

The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs.

Results

Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments.

Conclusions

The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome.

【 授权许可】

   
2012 Gazi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803154751940.pdf 3117KB PDF download
Figure 5. 61KB Image download
Figure 4. 134KB Image download
Figure 3. 40KB Image download
Figure 2. 108KB Image download
Figure 1. 128KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP: Secretion by numbers: protein traffic in prokaryotes. Mol Microbiol 2006, 62(2):308-319.
  • [2]Tseng T-T, Tyler BM, Setubal JC: Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009, 9(Suppl 1):S2. BioMed Central Full Text
  • [3]Cascales E, Christie PJ: The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003, 1(2):137-149.
  • [4]Cornelis GR: The type III secretion injectisome. Nat Rev Microbiol 2006, 4:811-825.
  • [5]Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M: Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications. Cell Microbiol 2009, 11(5):719-729.
  • [6]Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF, Charova SN, Kokkinidis M, Panopoulos NJ: Playing the “Harp”: evolution of our understanding of hrp/hrc Genes. Annu Rev Phytopathol 2010, 17:347-370.
  • [7]Tampakaki AP, Fadouloglou VE, Gazi AD, Panopoulos NJ, Kokkinidis M: Conserved features of type III secretion. Cell Microbiol 2004, 6(9):805-816.
  • [8]Troisfontaines P, Cornelis GR: Type III secretion: more systems than you think. Physiol 2005, 20:326-339.
  • [9]Gophna U, Ron EZ, Graur D: Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 2003, 312:151-163.
  • [10]Altschul SF, Madden TL, Schffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 1997, 25(17):3389-3402.
  • [11]Prilusky J, Felder CE, Zeev-Ben Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman IJ, Prilusky J, Felder CE, Zeev-Ben Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman IJLS: FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinf 2005, 21:3435-3438.
  • [12]Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292(2):195-202.
  • [13]Handbook. Totowa, New Jersey: Humana Press; 2005.
  • [14]Lupas A, Van Dyke M, Stock J: Predicting coiled coils from protein sequences. Science 1991, 252:1162-1164.
  • [15]Fischetti VA, Landau GM, Schmidt JP, Sellers P: Identifying periodic occurences of a template with applications to protein structure. Inform Process Let 1993, 45:11-18.
  • [16]Kelley LA, MacCallum RM, Sternberg MJE: Enhanced genome annotation with structural profiles in the program 3D-PSSM. J Mol Biol 2000, 299:499-500.
  • [17]McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinfor 2000, 16:404-405.
  • [18]Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorhism data. Bioinfor 2009, 25:1451-1452.
  • [19]Thompson JD, Higgins DG, Gibson TJ: ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position, specific gap penalties, and weight matrix choice. Nucleic Acid Res 1994, 22:4673-4680.
  • [20]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
  • [21]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [22]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39(4):783-791.
  • [23]Zuckerkandl E, Pauling L: Evolutionary divergence and convergence in proteins. New York: Academic; 1965.
  • [24]Rahme LG, Mindrinos MN, Panopoulos NJ: Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J Bacteriol 1992, 174(11):3499-3507.
  • [25]Rijpensa N, Jannesb G, Hermana L: Messenger RNA-based RT-PCR detection of viable Salmonella. Intern Diary J 2002, 12:233-238.
  • [26]Hueck CJ: Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998, 62(2):379-433.
  • [27]Xiao Y, Hutcheson SW: A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 1994, 176(10):3089-3091.
  • [28]Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X: Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 1998, 28(6):1381-1389.
  • [29]Krause A, Doerfel A, Göttfert M: Mutational and Transcriptional Analysis of the Type III Secretion System of Bradyrhizobium japonicum. MPMI 2002, 15(12):1228-1235.
  • [30]Kovács LG, Balatti PA, Krishnan HB, Pueppke SG: Transcriptional organisation and expression of nolXWBTUV, a locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol Microbiol 1995, 17:923-933.
  • [31]Fadouloglou VE, Tampakaki AP, Glykos NM, Bastaki MN, Hadden JM, Phillips SE, Panopoulos NJ, Kokkinidis M: Structure of HrcQB-C, a concerved component of the bacterial type III secretion systems. Proc Natl Acad Sci USA 2004, 101:70-75.
  • [32]Fadouloglou VE, Bastaki MN, Ashcroft AE, Phillips SEV, Panopoulos NJ, Glykos NM, Kokkinidis M: On the quaternary association of the type III secretion system HrcQB-C protein: experimental evidence differentiates among the various oligomerization models. J Struct Biol 2009, 166(2):214-225.
  • [33]Gazi AD, Bastaki M, Charova SN, Gkougkoulia EA, Kapellios EA, Panopoulos NJ, Kokkinidis M: Evidence for a coiled-coil interaction mode of disordered proteins from bacterial type III secretion systems. J Biol Chem 2008, 283(49):34062-34068.
  • [34]Pallen MJ, Beatson SA, Bailey CM: Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 2005, 5:9. BioMed Central Full Text
  • [35]Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X: Molecular basis of symbiosis between Rhizobium and legumes. Nat 1997, 387:394-401.
  • [36]Marie C, Broughton WJ, Deakin WJ: Rhizobium type III secretion systems: legume charmers or alarmers? Curr Opin Plant Biol 2001, 4(4):336-342.
  • [37]González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, et al.: The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Gen Biol 2003, 4(6):R36. BioMed Central Full Text
  • [38]Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A, Heinemeyer I, Morgenstern B, Pommerening-Roser A, Flores M, et al.: Rhizobium sp. Strain NGR234 Possesses a Remarkable Number of Secretion Systems. Appl Environ Microbiol 2009, 75(12):4035-4045.
  • [39]Petnicki-Ocwiega T, van Dijk K, Alfano JR: The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J Bacteriol 2005, 187:649-663.
  • [40]Day JB, Plano GV: The Yersinia pestis YscY Protein Directly Binds YscX, a Secreted Component of the Type III Secretion Machinery. J Bacteriol 2000, 182(7):1834-1843.
  • [41]Duderstadt KE, Berger JM: AAA + ATPases in the Initiation of DNA Replication. Crit Rev Biochem Mol Biol 2008, 43:163-187.
  • [42]Pallen MJ, Francis MS, Futterer K: Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol Lett 2003, 223:53-60.
  • [43]Darwin KH, Miller VL: Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J 2001, 20:1850-1862.
  • [44]Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, Daugherty SC, DeBoy R, Durkin AS, Giglio MG, et al.: Whole-Genome Sequence Analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 2005, 187(18):6488-6498.
  • [45]Sawada H, Suzuki F, Matsuda I, Saitou N: Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 1999, 49:627-644.
  • [46]Ettema TJG, Andersson SGE: The α-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 2009, 5:391-393.
  • [47]Fauvart M, Michiels J: Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 2008, 285:1-9.
  • [48]Beattie GA, Lindow SE: Bacterial colonization of leaves: a spectrum of Strategies. Phytopathol 1999, 89(5):353-359.
  • [49]Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JH: Subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 2006, 60:425-449.
  • [50]He SY: Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 1998, 36:363-392.
  • [51]Hirano SS, Upper CD: Bacteria in the Leaf Ecosystem with Emphasis on Pseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte. Microbiol Mol Biol Rev 2000, 64:624-653.
  • [52]Lindeberg M, Myers CR, Collmer A, Schneider DJ: Roadmap to new virulence determinants in Pseudomonas syringae: Insights from comparative genomics and genome organization. Mol Plant Microbiol Inter 2008, 21:685-700.
  • [53]da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, et al.: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417:459-463.
  • [54]Green S, Studholme DJ, Laue BE, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, et al.: Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS One 2010, 5(4):e10224.
  • [55]Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada J, et al.: Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol 2010, 12(6):1604-1620.
  • [56]Qi M, Wang D, Bradley CA, Zhao Y: Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011, 6(1):e16451.
  • [57]Huynh TV, Dahlbeck D, Staskawicz BJ: Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 1989, 245(4924):1374-1377.
  • [58]Clarke CR, Cai R, Studholme DJ, Guttman DS, Vinatzer BA: Pseudomonas syringae strains naturally lacking the classical P. syringae hrp/hrc Locus are common leaf colonizers equipped with an atypical type III secretion system. Mol Plant Microbe Interact 2010, 23(2):198-210.
  • [59]Records AR, Gross DC: Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J Bacteriol 2010, 192(14):3584-3596.
  • [60]Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ: Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol 2007, 9(7):797-803.
  • [61]Lesic B, Starkey M, He J, Hazan R, Rahme LG: Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 2009, 155(Pt 9):2845-2855.
  • [62]He J, Baldini RL, Deziel E, Saucier M, Zhang Q, Liberati NT, Lee D, Urbach J, Goodman HM, Rahme LG: The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 2004, 101:2530-2535.
  • [63]Fall S, Mercier A, Bertolla F, Calteau A, Gueguen L, Perŗi G, Vogel TM, Simonet P: Horizontal Gene Transfer Regulation in Bacteria as a β€ Spandrel β€ of DNA Repair Mechanisms. PLoS One 2007, 2(10):e1055.
  • [64]Youssef YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, et al.: Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 1997, 194:99-114.
  • [65]Peng G, Yuan Q, Li H, Zhang W, Tan Z: Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 2008, 58:2158-2163.
  文献评价指标  
  下载次数:90次 浏览次数:22次