期刊论文详细信息
BMC Evolutionary Biology
Functional characterization of spectral tuning mechanisms in the great bowerbird short-wavelength sensitive visual pigment (SWS1), and the origins of UV/violet vision in passerines and parrots
Belinda SW Chang4  John A Endler3  Lainy Day2  Amir Sabouhanian1  Ilke van Hazel1 
[1] Department of Ecology & Evolutionary, Biology University of Toronto, Toronto, Canada;Department of Biology, University of Mississippi, Oxford, Mississippi, USA;Centre for Integrative Ecology, Deakin University, Melbourne, Australia;Centre for the Analysis of Genomes and Evolution, University of Toronto, Toronto, Canada
关键词: Visual pigment evolution;    Bird vision;    Ultraviolet;    Opsins;   
Others  :  1085122
DOI  :  10.1186/1471-2148-13-250
 received in 2013-08-13, accepted in 2013-11-01,  发布年份 2013
PDF
【 摘 要 】

Background

One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures.

Results

The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor.

Conclusions

Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type ancestor. The re-evolution of UVS from a VS type pigment has not previously been predicted elsewhere in the vertebrate phylogeny.

【 授权许可】

   
2013 van Hazel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113170829634.pdf 1558KB PDF download
Figure 6. 47KB Image download
Figure 5. 76KB Image download
Figure 4. 24KB Image download
Figure 3. 130KB Image download
Figure 2. 44KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Doucet SM, Montgomerie R: Bower location and orientation in satin bowerbirds: optimising the conspicuousness of male display? Emu 2003, 103(2):105-109.
  • [2]Endler JA, Day LB: Ornament colour selection, visual contrast and the shape of colour preference functions in great bowerbirds, Chlamydera nuchalis. Anim Behav 2006, 72:1405-1416.
  • [3]Endler JA, Westcott DA, Madden JR, Robson T: Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 2005, 59(8):1795-1818.
  • [4]Doucet SM, Shawkey MD, Hill GE, Montgomerie R: Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 2006, 209(Pt 2):380-390.
  • [5]Endler JA, Endler LC, Doerr NR: Great bowerbirds create theaters with forced perspective when seen by their audience. Curr Biol 2010, 20(18):1679-1684.
  • [6]Endler JA, Mielke PW: Comparing entire colour patterns as birds see them. Biol J Linn Soc 2005, 86(4):405-431.
  • [7]Viitala J, Korpimäki E, Palokangas P, Koivula M: Attraction of kestrels to vole scent marks visible in ultraviolet-light. Nature 1995, 373(6513):425-427.
  • [8]Siitari H, Honkavaara J, Huhta E, Viitala J: Ultraviolet reflection and female mate choice in the pied flycatcher, Ficedula hypoleuca. Anim Behav 2002, 63(1):97-102.
  • [9]Alonso-Alvarez C, Doutrelant C, Sorci G: Ultraviolet reflectance affects male-male interactions in the blue tit (Parus caeruleus ultramarinus). Behav Ecol 2004, 15(5):805-809.
  • [10]Andersson S, Amundsen T: Ultraviolet colour vision and ornamentation in bluethroats. P Roy Soc B-Biol Sci 1997, 264(1388):1587-1591.
  • [11]Hunt S, Bennett ATD, Cuthill IC, Griffiths R: Blue tits are ultraviolet tits. Proc R Soc Lond B 1998, 265(1395):451-455.
  • [12]Pearn SM, Bennett ATD, Cuthill IC: Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulatus. Proc Biol Sci / The Royal Soc 2001, 268(1482):2273-2279.
  • [13]Menon ST, Han M, Sakmar TP: Rhodopsin: structural basis of molecular physiology. Physiol Rev 2001, 81(4):1659-1688.
  • [14]Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA: How color visual pigments are tuned. Trends Biochem Sci 1999, 24(8):300-305.
  • [15]Bowmaker JK: Evolution of vertebrate visual pigments. Vision research 2008, 48(20):2022-2041.
  • [16]Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM: The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J 2002, 367(Pt 1):129-135.
  • [17]Wilkie SE, Robinson PR, Cronin TW, Poopalasundaram S, Bowmaker JK, Hunt DM: Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry 2000, 39(27):7895-7901.
  • [18]Yokoyama S, Radlwimmer FB, Blow NS: Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci 2000, 97(13):7366-7371.
  • [19]Fasick JI, Applebury ML, Oprian DD: Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry 2002, 41(21):6860-6865.
  • [20]Fasick JI, Lee N, Oprian DD: Spectral tuning in the human blue cone pigment. Biochemistry 1999, 38(36):11593-11596.
  • [21]Shi Y, Yokoyama S: Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A 2003, 100(14):8308-8313.
  • [22]Takahashi Y, Ebrey T: Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment†. Biochemistry 2003, 42:6025-6034.
  • [23]Carvalho LS, Davies WL, Robinson PR, Hunt DM: Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc Biol Sci / The Royal Soc 2012, 279(1727):387-393.
  • [24]Yokoyama S, Shi Y: Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett 2000, 486(2):167-172.
  • [25]Ödeen A, Håstad O: Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 2003, 20(6):855-861.
  • [26]Aidala Z, Huynen L, Brennan PL, Musser J, Fidler A, Chong N, Machovsky Capuska GE, Anderson MG, Talaba A, Lambert D, et al.: Ultraviolet visual sensitivity in three avian lineages: paleognaths, parrots, and passerines. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012, 198(7):495-510.
  • [27]Ödeen A, Håstad O: The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol Biol 2013, 13:36. BioMed Central Full Text
  • [28]Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM: The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 2007, 24(8):1843-1852.
  • [29]Parry JWL, Poopalasundaram S, Bowmaker JK, Hunt DM: A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Biochemistry 2004, 43(25):8014-8020.
  • [30]Yokoyama S, Takenaka N, Agnew DW, Shoshani J: Elephants and human color-blind deuteranopes have identical sets of visual pigments. Genetics 2005, 170(1):335-344.
  • [31]Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, et al.: A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320(5884):1763-1768.
  • [32]Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J: Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2011, 2:443.
  • [33]Wang N, Braun EL, Kimball RT: Testing hypotheses about the sister group of the passeriformes using an independent 30-locus data set. Mol Biol Evol 2012, 29(2):737-750.
  • [34]Pratt RC, Gibb GC, Morgan-Richards M, Phillips MJ, Hendy MD, Penny D: Toward resolving deep Neoaves phylogeny: data, signal enhancement and priors. Mol Biol Evol 2009, 26:313-326.
  • [35]Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA: Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 2011, 28:1927-1942.
  • [36]Wilkie SE, Vissers PM, Das D, Degrip WJ, Bowmaker JK, Hunt DM: The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochem J 1998, 330(Pt 1):541-547.
  • [37]Yokoyama S, Blow NS, Radlwimmer FB: Molecular evolution of color vision of zebra finch. Gene 2000, 259(1–2):17-24.
  • [38]Carvalho LS, Knott B, Berg ML, Bennett AT, Hunt DM: Ultraviolet-sensitive vision in long-lived birds. Proc Biol Sci / The Royal Soc 2011, 278(1702):107-114.
  • [39]Coyle BJ, Hart NS, Carleton KL, Borgia G: Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. J Exp Biol 2012, 215(Pt 7):1090-1105.
  • [40]Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J: Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci U S A 2004, 101(30):11040-11045.
  • [41]Ödeen A, Håstad O, Alström P: Evolution of ultraviolet vision in the largest avian radiation - the passerines. BMC Evol Biol 2011, 11(1):313. BioMed Central Full Text
  • [42]Ödeen A, Håstad O: New primers for the avian SWS1 pigment opsin gene reveal new amino acid configurations in spectral sensitivity tuning sites. J Hered 2009, 100(6):784-789.
  • [43]Kawamura S, Blow NS, Yokoyama S: Genetic analyses of visual pigments of the pigeon (Columba livia). Genetics 1999, 153(4):1839-1850.
  • [44]Kito Y, Suzuki T, Azuma M, Sekoguti Y: Absorption spectrum of rhodopsin denatured with acid. Nature 1968, 218(5145):955. &
  • [45]Matthews RG, Hubbard R, Brown PK, Wald G: Tautomeric forms of metarhodopsin. J Gen Physiol 1963, 47:215-240.
  • [46]Koutalos Y, Ebrey TG, Tsuda M, Odashima K, Lien T, Park MH, Shimizu N, Nakanishi K, Gilson HR, Honig B, et al.: Regeneration of bovine and octopus opsins in situ with natural and artificial retinals. Biochemistry 1989, 28:2732-2739.
  • [47]Ma JX, Kono M, Xu L, Das J, Ryan JC, Hazard ES, Oprian DD, Crouch RK: Salamander UV cone pigment: sequence, expression, and spectral properties. Visual Neurosci 2001, 18(3):393-399.
  • [48]Das J, Crouch RK, Ma JX, Oprian DD, Kono M: Role of the 9-methyl group of retinal in cone visual pigments. Biochemistry 2004, 43(18):5532-5538.
  • [49]Dukkipati A, Kusnetzow A, Babu KR, Ramos L, Singh D, Knox BE, Birge RR: Phototransduction by vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base following photobleaching. Biochemistry 2002, 41(31):9842-9851.
  • [50]Shi Y, Radlwimmer FB, Yokoyama S: Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A 2001, 98(20):11731-11736.
  • [51]Tsutsui K, Shichida Y: Photosensitivities of rhodopsin mutants with a displaced counterion. Biochemistry 2010, 49(47):10089-10097.
  • [52]Rao VR, Cohen GB, Oprian DD: Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994, 367(6464):639-642.
  • [53]Janz JM, Farrens DL: Engineering a functional blue-wavelength-shifted rhodopsin mutant. Biochemistry 2001, 40(24):7219-7227.
  • [54]Lin SW, Kochendoerfer GG, Carroll KS, Wang D, Mathies RA, Sakmar TP: Mechanisms of spectral tuning in blue cone visual pigments: visible and raman spectroscopy of blue-shifted rhodopsin mutants. J Biol Chem 1998, 273(38):24583-24591.
  • [55]Hunt DM, Carvalho LS, Cowing JA, Davies WL: Evolution and spectral tuning of visual pigments in birds and mammals. Philos Trans R Soc Lond B Biol Sci 2009, 364(1531):2941-2955.
  • [56]Irestedt M, Ohlson JI: The division of the major songbird radiation into passerida and ‘core corvoidea’ (aves: passeriformes) — the species tree vs. gene trees. Zool Scr 2008, 37(3):305-313.
  • [57]Jønsson KA, Irestedt M, Fuchs J, Ericson PGP, Christidis L, Bowie RCK, Norman JA, Pasquet E, Fjeldså J: Explosive avian radiations and multi-directional dispersal across wallacea: evidence from the campephagidae and other crown corvida (aves). Mol Phylogenet Evol 2008, 47(1):221-236.
  • [58]Zuccon D, Ericson PGP: Molecular and morphological evidences place the extinct New Zealand endemic Turnagra capensis in the oriolidae. Mol Phylogenet Evol 2012, 62(1):414-426.
  • [59]Hunt DM, Cowing JA, Wilkie SE, Parry JWL, Poopalasundaram S, Bowmaker JK: Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci 2004, 3(6):713.
  • [60]Takahashi Y, Yokoyama S: Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis. Genetics 2005, 171(3):1153-1160.
  • [61]Yokoyama S, Starmer WT, Takahashi Y, Tada T: Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. Gene 2006, 365:95-103.
  • [62]Cowing JA, Poopalasundaram S, Wilkie SE, Bowmaker JK, Hunt DM: Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry 2002, 41(19):6019-6025.
  • [63]Doucet SM, Montgomerie R: Multiple sexual ornaments in satin bowerbirds: ultraviolet plumage and bowers signal different aspects of male quality. Behav Ecol 2003, 14(4):503-509.
  • [64]Savard J-F, Keagy J, Borgia G: Blue, not UV, plumage color is important in satin bowerbird Ptilonorhynchus violaceus display. J Avian Biol 2011, 42(1):80-84.
  • [65]Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, et al.: Speciation through sensory drive in cichlid fish. Nature 2008, 455(7213):620-626.
  • [66]Carleton KL, Parry JW, Bowmaker JK, Hunt DM, Seehausen O: Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol Ecol 2005, 14(14):4341-4353.
  • [67]Hausmann F, Arnold KE, Marshall NJ, Owens IPF: Ultraviolet signals in birds are special. Proc R Soc Lond B 2003, 270(1510):61-67.
  • [68]Bowmaker JK: Colour-vision in birds and the role of oil droplets. Trends Neurosci 1980, 3(8):196-199.
  • [69]Hart NS, Vorobyev M: Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005, 191(4):381-392.
  • [70]Kusnetzow A, Dukkipati A, Babu K, Ramos L, Knox B, Birge R: Vertebrate ultraviolet visual pigments: protonation of the retinylidene schiff base and a counterion switch during photoactivation. Proc Natl Acad Sci U S A 2004, 101(4):941-946.
  • [71]Chen MH, Kuemmel C, Birge RR, Knox BE: Rapid release of retinal from a cone visual pigment following photoactivation. Biochemistry 2012, 51(20):4117-4125.
  • [72]Luo D-G, Yue WWS, Ala-Laurila P, Yau K-W: Activation of visual pigments by light and heat. Science 2011, 332(6035):1307-1312.
  • [73]Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K: In search of the visual pigment template. Vis Neurosci 2000, 17(4):509-528.
  • [74]Tsutsui K, Imai H, Shichida Y: Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal schiff base†. Biochemistry 2007, 46(21):6437-6445.
  • [75]Seutin G, White BN, Boag PT: Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 1991, 69(1):82-90.
  • [76]Morrow JM, Chang BS: The p1D4-hrGFP II expression vector: a tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid 2010, 64(3):162-169.
  • [77]Starace DM, Knox BE: Cloning and expression of a Xenopus short wavelength cone pigment. Exp Eye Res 1998, 67(2):209-220.
  • [78]Molday RS, MacKenzie D: Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 1983, 22(3):653-660.
  • [79]Loytynoja A, Goldman N: An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 2005, 102:10557-10562.
  • [80]Barker FK, Barrowclough GF, Groth JG: A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proc Biol Sci / The Royal Soc 2002, 269(1488):295-308.
  • [81]Beresford P, Barker FK, Ryan PG, Crowe TM: African endemics span the tree of songbirds (Passeri): molecular systematics of several evolutionary ‘enigmas’. Proc Biol Sci / The Royal Soc 2005, 272(1565):849-858.
  • [82]Johansson US, Fjeldså J, Bowie RCK: Phylogenetic relationships within passerida (aves: passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. Mol Phylogenet Evol 2008, 48(3):858-876.
  • [83]Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, et al.: A multilocus molecular phylogeny of the parrots (psittaciformes): support for a gondwanan origin during the cretaceous. Mol Biol Evol 2008, 25(10):2141-2156.
  • [84]Gardner JL, Trueman JW, Ebert D, Joseph L, Magrath RD: Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Mol Phylogenet Evol 2010, 55(3):1087-1102.
  • [85]Driskell AC, Norman JA, Pruett-Jones S, Mangall E, Sonsthagen S, Christidis L: A multigene phylogeny examining evolutionary and ecological relationships in the Australo-Papuan wrens of the subfamily malurinae (aves). Mol Phylogenet Evol 2011, 60(3):480-485.
  • [86]Jønsson KA, Fabre P-H, Ricklefs RE, Fjeldså J: Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proc Natl Acad Sci U S A 2011, 108(6):2328-2333.
  • [87]Lee JY, Joseph L, Edwards SV: A species tree for the Australo-Papuan fairy-wrens and allies (Aves: Maluridae). Syst Biol 2012, 61(2):253-271.
  • [88]Yang Z, Kumar S, Nei M: A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 1995, 141(4):1641-1650.
  • [89]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [90]Felsenstein J: Evolutionary trees from gene-frequencies and quantitative characters - finding maximum-likelihood estimates. Evolution 1981, 35(6):1229-1242.
  • [91]Yang Z, Kumar S: Approximate methods for estimating the pattern of nucleotide substitution and the variation of substitution rates among sites. Mol Biol Evol 1996, 13(5):650-659.
  • [92]Yang Z, Nielsen R, Goldman N, Pedersen AK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155(1):431-449.
  • [93]Williams PD, Pollock DD, Blackburne BP, Goldstein RA: Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol 2006, 2(6):e69.
  • [94]Pollock DD, Chang BSW: Dealing with uncertainty in ancestral sequence reconstruction: sampling from the posterior distribution. In Ancestral sequence reconstruction. Edited by Liberles DA. New York: Oxford University Press; 2007:85-94.
  • [95]Gaucher EA, Govindarajan S, Ganesh OK: Palaeotemperature trend for precambrian life inferred from resurrected proteins. Nature 2008, 451(7179):704-707.
  • [96]Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234(3):779-815.
  • [97]Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V: The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 2004, 342(2):571-583.
  • [98]Shen MY, Sali A: Statistical potential for assessment and prediction of protein structures. Protein Sci 2006, 15(11):2507-2524.
  • [99]Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35(Web Server issue):W407-W410.
  • [100]Laskowski RA, Macarthur MW, Moss DS, Thornton JM: Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993, 26:283-291.
  • [101]Das D, Wilkie SE, Hunt DM, Bowmaker JK: Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision Res 1999, 39:2801-2815.
  • [102]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
  • [103]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  • [104]Guindon S, Lethiec F, Duroux P, Gascuel O: PHYML online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 2005, 33:W557-W559.
  • [105]Nylander J: MrModeltest v2.3. In Program distributed by the author. Uppsala Sweden: Evolutionary Biology Centre, Uppsala University; 2008.
  • [106]Ödeen A, Pruett-Jones S, Driskell AC, Armenta JK, Hastad O: Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc Biol Sci 2012, 279:1269-1276.
  • [107]Ronquist F, Huelsenbeck JP: MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [108]Seddon N, Tobias JA, Eaton M, Odeen A: Human vision can provide a valid proxy for avian perception of sexual dichromatism. Auk 2010, 127:283-292.
  文献评价指标  
  下载次数:14次 浏览次数:4次