期刊论文详细信息
BMC Genetics
CDKN2A-rs10811661 polymorphism, waist-hip ratio, systolic blood pressure, and dyslipidemia are the independent risk factors for prediabetes in a Vietnamese population
Trinh Thi Hong Nhung3  Bui Thi Nhung2  Pham Tran Phuong3  Nguyen Thi Trung Thu1  Tran Quang Binh3 
[1]Hanoi National University of Education, 136 Xuan Thuy Street, Hanoi, Vietnam
[2]National Institute of Nutrition, 48B Tang Bat Ho Street, Hanoi 112807, Vietnam
[3]National Institute of Hygiene and Epidemiology, 1 Yersin, Hanoi 112800, Vietnam
关键词: Vietnamese population;    Single nucleotide polymorphism;    Prediabetes;    CDKN2A gene;    Association study;   
Others  :  1224623
DOI  :  10.1186/s12863-015-0266-0
 received in 2015-04-16, accepted in 2015-08-21,  发布年份 2015
PDF
【 摘 要 】

Background

People with prediabetes are at greater risk for heart attack, stroke, kidney disease, vision problems, nerve damage and high blood pressure, compared to those without the disease. Prediabetes is a complex disorder involving both genetic and environmental factors in its pathogenesis. This cross-sectional study aimed to investigate the independent risk factors for prediabetes, considering the contribution of genetic factors (TCF7L2-rs7903146, IRS1-rs1801278, INSR-rs3745551, CDKN2A-rs10811661, and FTO-rs9939609), socio-economic status, and lifestyle factors.

Results

Among the candidate genes studied, the CDKN2A-rs10811661 polymorphism was found to be the most significant factor associated with prediabetes in the model unadjusted and adjusted for age, sex, obesity-related traits, systolic blood pressure, dyslipidemia, socio-economic status, and lifestyle factors. In the final model, the CDKN2A-rs10811661 polymorphism (OR per T allele = 1.22, 95 % CI = 1.04–1.44, P = 0.017), systolic blood pressure (OR per 10 mmHg = 1.14, 95 % CI = 1.08–1.20, P < 0.0001), waist-hip ratio (OR = 1.25, 95 % CI = 1.10–1.42, P < 0.0001), dyslipidemia (OR = 1.57, 95 % CI = 1.15–2.14, P = 0.004), and residence (OR = 1.93, 95 % CI = 2.82–4.14, P < 0.0001) were the most significant independent predictors of prediabetes, in which the power of the adjusted prediction model was 0.646.

Conclusions

The study suggested that the CDKN2A-rs10811661 polymorphism, waist-hip ratio, systolic blood pressure, and dyslipidemia were significantly associated with the increased risk of prediabetes in a Vietnamese population. The studied genetic variant had a small effect on prediabetes.

【 授权许可】

   
2015 Binh et al.

【 预 览 】
附件列表
Files Size Format View
20150912015659534.pdf 562KB PDF download
Fig. 1. 30KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M et al.. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002; 55(1):65-85.
  • [2]Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman B. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007; 30(3):753-9.
  • [3]Nichols GA, Hillier TA, Brown JB. Progression from newly acquired impaired fasting glusose to type 2 diabetes. Diabetes Care. 2007; 30(2):228-33.
  • [4]Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW et al.. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007; 116(2):151-7.
  • [5]Buysschaert M, Medina JL, Bergman M, Shah A, Lonier J. Prediabetes and associated disorders. Endocrine. 2014;1–23. doi:10.1007/s12020-014-0436-2.
  • [6]Tuso P. Prediabetes and lifestyle modification: time to prevent a preventable disease. Perm J. 2014; 18(3):88-93.
  • [7]Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, Hu FB. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009; 301:2129-40.
  • [8]Weber MB, Oza–Frank R, Staimez LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors, and effectiveness of behavioral intervention at individual and population levels. Annu Rev Nutr. 2012; 32:417-39.
  • [9]Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al.. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007; 445:881-5.
  • [10]Basile KJ, Johnson ME, Xia Q, Grant SF. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies. Int J Endocrinol. 2014; 2014:769671.
  • [11]Saxena R, Elbers CC, Guo Y, Peter I, Gaunt TR, Mega JL et al.. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet. 2012; 90:410-25.
  • [12]Quang Binh T, Tran Phuong P, Thi Nhung B, Dinh Thoang D, Van Thang P, Khanh Long T, Van Thanh D. Prevalence and correlates of hyperglycemia in a rural population, Vietnam: implications from a cross-sectional study. BMC Public Health. 2012; 12:939. BioMed Central Full Text
  • [13]Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97. doi:10.1001/jama.285.19.2486
  • [14]Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO consultation. World Health Organization, Geneva; 2006.
  • [15]Wangkumhang P, Chaichoompu K, Ngamphiw C, Ruangrit U, Chanprasert J, Assawamakin A, Tongsima S. WASP: a Web–based Allele–Specific PCR assay designing tool for detecting SNPs and mutations. BMC Genomics. 2007; 8:275. BioMed Central Full Text
  • [16]Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006; 22(15):1928-9.
  • [17]Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. http://www. R-project.org/ webcite
  • [18]Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al.. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007; 316(5829):1341-5.
  • [19]Grarup N, Rose CS, Andersson EA, Andersen G, Nielsen AL, Albrechtsen A et al.. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes. 2007; 56(12):3105-11.
  • [20]Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al.. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007; 316:1336-41.
  • [21]Ng MCY, Park KS, Oh B, Tam CHT, Cho YM, Shin HD et al.. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008; 57:2226-33.
  • [22]Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K et al.. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008; 57:791-5.
  • [23]Wu Y, Li H, Loos RJ, Yu Z, Ye X, Chen L et al.. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008; 57(10):2834-42.
  • [24]Ganesh C, Charles US, Rubina T, Seema B, Smita RK, Anubha M et al.. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2 and CDKAL1 on the risk of type 2 diabetes in 5.164 Indians. Diabetes. 2010; 59:2068-74.
  • [25]Xu M, Bi Y, Xu Y, Yu B, Huang Y, Gu L et al.. Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One. 2010; 5(11):e14022.
  • [26]Hara K, Fujita H, Johnson TA, Yamauchi T, Yasuda K, Horikoshi M et al.. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum Mol Genet. 2014; 23(1):239-46.
  • [27]Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014; 46(3):234-44.
  • [28]Zyriax B-C, Salazar R, Hoeppner W, Vettorazzi E, Herder C, Windler E. The association of genetic markers for type 2 diabetes with prediabetic status - cross-sectional data of a diabetes prevention trial. PLoS One. 2013; 8(9):e75807.
  • [29]Adeyemo A, Rotimi C. Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics. 2010; 13:72-9.
  • [30]Sherry ST, Ward M and Sirotkin K. dbSNP–Database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9:677–9.
  • [31]Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000; 106(4):473-81.
  • [32]Stančáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS et al.. Association of 18 confirmed susceptibility Loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes. 2009; 58(9):2129-36.
  • [33]Khambalia A, Phongsavan P, Smith BJ, Keke K, Dan L, Fitzhardinge A et al.. Prevalence and risk factors of diabetes and impaired fasting glucose in Nauru. BMC Public Health. 2011; 11:719. BioMed Central Full Text
  • [34]Soriguer F, Goday A, Bosch-Comas A, Bordiú E, Calle-Pascual A, Carmena R et al.. Prevalence of diabetes mellitus and impaired glucose regulation in Spain: The Di@bet.es Study. Diabetologia. 2012; 55:88-93.
  • [35]Díaz-Redondo A, Giráldez-García C, Carrillo L, Serrano R, García-Soidán F, Artola S et al.. Modifiable risk factors associated with prediabetes in men and women: a cross-sectional analysis of the cohort study in primary health care on the evolution of patients with prediabetes (PREDAPS-Study). BMC Fam Pract. 2015; 16:5. BioMed Central Full Text
  文献评价指标  
  下载次数:2次 浏览次数:10次