期刊论文详细信息
BMC Genomics
Characterisation of Caenorhabditis elegans sperm transcriptome and proteome
Long Miao2  Fuquan Yang1  Shilin Chen3  Yanmei Zhao2  Peng Xue1  Chunfang Li3  Yingjie Zhu3  Xuan Ma2 
[1]Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
[2]Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
[3]Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100094, China
关键词: Proteome;    Transcriptome;    Sperm;    C. elegans;   
Others  :  1217828
DOI  :  10.1186/1471-2164-15-168
 received in 2013-09-04, accepted in 2014-02-13,  发布年份 2014
PDF
【 摘 要 】

Background

Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome.

Results

First, sperm transcriptome consists of considerable amounts of non-coding RNAs, many of which have not been annotated and may play functional roles during spermatogenesis. Second, apart from kinases/phosphatases as previously reported, ion binding proteins are also enriched in sperm, underlying the crucial roles of intracellular ions in post-translational regulation in sperm. Third, while the majority of sperm genes/proteins have low abundance, a small number of sperm genes/proteins are hugely enriched in sperm, implying that sperm only rely on a small set of proteins for post-translational regulation. Lastly, by extensive RNAi screening of sperm enriched genes, we identified a few genes that control fertility. Our further analysis reveals a tight correlation between sperm transcriptome and sperm small RNAome, suggesting that the endogenous siRNAs strongly repress sperm genes. This leads to an idea that the inefficient RNAi screening of sperm genes, a phenomenon currently with unknown causes, might result from the competition between the endogenous RNAi pathway and the exogenous RNAi pathway.

Conclusions

Together, the obtained sperm transcriptome and proteome serve as valuable resources to systematically study spermatogenesis in C. elegans.

【 授权许可】

   
2014 Ma et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708112532570.pdf 2455KB PDF download
Figure 9. 72KB Image download
Figure 8. 52KB Image download
Figure 7. 23KB Image download
Figure 6. 80KB Image download
Figure 5. 97KB Image download
Figure 4. 93KB Image download
Figure 3. 40KB Image download
Figure 2. 73KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Krawetz SA: Paternal contribution: new insights and future challenges. Nat Rev Genet 2005, 6(8):633-642.
  • [2]Boerke A, Dieleman SJ, Gadella BM: A possible role for sperm RNA in early embryo development. Theriogenology 2007, 68:S147-S155.
  • [3]Lalancette C, Miller D, Li Y, Krawetz SA: Paternal contributions: new functional insights for spermatozoal RNA. J Cell Biochem 2008, 104(5):1570-1579.
  • [4]Dadoune JP: Spermatozoal RNAs: what about their functions? Microsc Res Tech 2009, 72(8):536-551.
  • [5]Jenkins TG, Carrell DT: The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl 2011, 13(1):76-80.
  • [6]Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA: The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 2011, 141(1):21-36.
  • [7]Yamauchi Y, Shaman JA, Ward WS: Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl 2011, 13(1):31-35.
  • [8]Betlach CJ, Erickson RP: A unique RNA species from maturing mouse spermatozoa. Nature 1973, 242(5393):114-115.
  • [9]Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F: RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006, 441(7092):469-474.
  • [10]Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W: Paternal control of embryonic patterning in Arabidopsis thaliana. Science 2009, 323(5920):1485-1488.
  • [11]Liu WM, Pang RTK, Chiu PCN, Wong BPC, Lao KQ, Lee KF, Yeung WSB: Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A 2011, 109(2):490-494.
  • [12]Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA: Spermatozoal RNA profiles of normal fertile men. Lancet 2002, 360(9335):772-777.
  • [13]Sun YQ, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ: Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004, 32(22):e188.
  • [14]Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A: A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 2009, 183(4):1297-1314.
  • [15]Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK: 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 2009, 106(44):18674-18679.
  • [16]Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ: Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans Soma. Mol Cell 2010, 37(5):679-689.
  • [17]Conine CC, Batista PJ, Gu WF, Claycomb JM, Chaves DA, Shirayama M, Mello CC: Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009, 107(8):3588-3593.
  • [18]Wei LQ, Yan LF, Wang T: Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 2011, 12(6):R53. BioMed Central Full Text
  • [19]Pina C, Pinto F, Feijo JA, Becker JD: Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 2005, 138(2):744-756.
  • [20]Grennan AK: An analysis of the Arabidopsis pollen transcriptome. Plant Physiol 2007, 145(1):3-4.
  • [21]Honys D, Twell D: Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 2003, 132(2):640-652.
  • [22]Hafidh S, Breznenova K, Ruzicka P, Fecikova J, Capkova V, Honys D: Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biology 2012, 12:24. BioMed Central Full Text
  • [23]L’Hernaults S: Spermatogenesis. Wormbook 2006. http://wormbook.org/chapters/www_spermatogenesis/spermatogenesis.html webcite
  • [24]Shakes DC, Wu JC, Sadler PL, LaPrade K, Moore LL, Noritake A, Chu DS: Spermatogenesis-specific features of the meiotic program in Caenorhabditis elegans. Plos Genetics 2009, 5(8):1000611.
  • [25]del Castillo-Olivares A, Kulkarni M, Smith HE: Regulation of sperm gene expression by the GATA factor ELT-1. Dev Biol 2009, 333(2):397-408.
  • [26]Kulkarni M, Shakes DC, Guevel K, Smith HE: SPE-44 implements sperm cell fate. Plos Genetics 2012, 8(4):587-600.
  • [27]Nishimura H, L’Hernault SW: Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev Dyn 2010, 239(5):1502-1514.
  • [28]Reinke V, Gil IS, Ward S, Kazmer K: Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 2004, 131(2):311-323.
  • [29]Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJM, Davis EB, Scherer S, Kim SK, Ward S: A global profile of germline gene expression in C. elegans. Mol Cell 2000, 6(3):605-616.
  • [30]Reuben M, Lin R: Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 2002, 245(1):71-82.
  • [31]Numata K, Kanai A, Saito R, Kondo S, Adachi J, Wilming LG, Hume DA, Hayashizaki Y, Tomita M, Grp RG, Members GSL, Hayashizaki Y, Tomita M, RIKEN GER Group: Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 2003, 13(6B):1301-1306.
  • [32]Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schönbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002, 420(6915):563-573.
  • [33]Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 2004, 36(1):40-45.
  • [34]Jiang ZF, Croshaw DA, Wang Y, Hey J, Machado CA: Enrichment of mRNA-like Noncoding RNAs in the divergence of Drosophila Males. Mol Biol Evol 2011, 28(4):1339-1348.
  • [35]Nam J-W, Bartel D: Long non-coding RNAs in C. elegans. Genome Res 2012. published online June 15, 2012.
  • [36]Wu JC, Go AC, Samson M, Cintra T, Mirsoian S, Wu TF, Jow MM, Routman EJ, Chu DS: Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 2012, 190(1):143-157.
  • [37]Machaca K, DeFelice LJ, Lhernault SW: A novel chloride channel localizes to Caenorhabditis elegans spermatids and chloride channel blockers induce spermatid differentiation. Dev Biol 1996, 176(1):1-16.
  • [38]Nelson GA, Ward S: Vesicle fusion, pseudopod extension and ameboid motility are induced in nematode spermatids by the inophore monensin. Cell 1980, 19(2):457-464.
  • [39]Bandyopadhyay J, Lee J, Il Lee J, Yu JR, Jee C, Cho JH, Jung S, Lee MH, Zannoni S, Singson A, Kim DH, Koo HS, Ahnn J: Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Mol Biol Cell 2002, 13(9):3281-3293.
  • [40]Park BJ, Lee DG, Yu JR, Jung SK, Choi K, Lee J, Kim YS, Il Lee J, Kwon JY, Singson A, Song WK, Eom SH, Park CS, Kim DH, Bandyopadhyay J, Ahnn J: Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol Biol Cell 2001, 12(9):2835-2845.
  • [41]Washington NL, Ward S: FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 2006, 119(12):2552-2562.
  • [42]Small CM, Carney GE, Mo Q, Vannucci M, Jones AG: A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 2009, 10(579):1471-2164.
  • [43]Zhang YSD, Parisi M, Kumar S, Oliver B: Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 2007, 450(7167):233-237.
  • [44]Thomas CGLR, Smith HE, Woodruff GC, Oliver B, Haag ES: Simplification and desexualization of gene expression in self-fertile nematodes. Curr Biol 2012, 22(22):2167-2172.
  • [45]Stone S, Shaw JE: A Caernorhabditis elegans Act-4::lacZ fusion: use as a transformation marker and analysis of tissue specific expression. Gene 1993, 131(2):167-173.
  • [46]Ramani AK, Chuluunbaatar T, Verster AJ, Na H, Vu V, Pelte N, Wannissorn N, Jiao A, Fraser AG: The majority of animal genes are required for wild-type fitness. Cell 2012, 148(4):792-802.
  • [47]Zhu GD, Salazar G, Zlatic SA, Fiza B, Doucette MM, Heilman CJ, Levey AI, Faundez V, L’Hernault SW: SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol Biol Cell 2009, 20(4):1223-1240.
  • [48]Oliva R, Ballesca JL: Altered histone retention and epigenetic modifications in the sperm of infertile men. Asian J Androl 2012, 14(2):239-240.
  • [49]Hammoud SS, Nix DA, Zhang HY, Purwar J, Carrell DT, Cairns BR: Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009, 460(7254):473-U447.
  • [50]Carrell DT, Hammoud SS: The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod 2012, 16(1):37-47.
  • [51]L’Hernault SW, Roberts TM: Cell biology of nematode sperm. Methods in Cell Biology 1995, 273-301.
  • [52]Chu DS, Liu H, Nix P, Wu TF, Ralston EJ, Yates JR III, Meyer BJ: Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 2006, 443(7107):101-105.
  • [53]Miller M: Sperm and oocyte isolation methods for biochemical and proteomic analysis. Methods in Molecular Biology. Methods in Molecular Biology 2006, 193-201.
  • [54]Timmons L, Court DL, Fire A: Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001, 263(1-2):103-112.
  • [55]Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PVE, Kamath RS, Fraser AG, Ahringer J, Plasterk RHA: Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. Plos Biol 2003, 1(1):77-84.
  • [56]Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J: Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421(6920):231-237.
  文献评价指标  
  下载次数:72次 浏览次数:13次