期刊论文详细信息
BMC Neuroscience
The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2
Tatyana Strekalova5  Raymond Cespuglio4  Galia V Pavlova1  Alexander V Revishchin1  Dmitry Malin3  Harry WM Steinbusch5  Brandon H Cline2 
[1] Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov str, Moscow, 119334, Russia;Interdisciplinary Center for Neurosciences, Heidelberg University, and Institute for Neuroanatomy, University Clinic Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany;Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Baltiyskaya str. 8, 125315, Moscow, Russia;Claude Bernard University, Lyon1, Faculty of Medicine, EA 4170, Av. Rockefeller 8, 69373, Lyon, CEDEX 08, France;School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL, 6229 ER, Maastricht, Netherlands
关键词: Mouse;    Stress-induced anhedonia;    Hippocampus;    Insulin growth factor 2;    Insulin-like receptor;    Dicholine succinate;   
Others  :  1141008
DOI  :  10.1186/1471-2202-13-110
 received in 2012-03-26, accepted in 2012-09-14,  发布年份 2012
PDF
【 摘 要 】

Background

A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling.

Results

Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2.

Conclusions

Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.

【 授权许可】

   
2012 Cline et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325182721387.pdf 784KB PDF download
Figure 5. 55KB Image download
Figure 4. 44KB Image download
Figure 3. 55KB Image download
Figure 2. 31KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Willis T: Diabetes: A Medical Odyssey. Tuckahoe, New York; 1971.
  • [2]Egede LE, Ellis C: Diabetes and depression: global perspectives. Diabetes Res Clin Pract 2010, 87:302-312.
  • [3]Ali S, Stone MA, Peters JL, Davies MJ, Khunti K: The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med 2006, 23:1165-1173.
  • [4]Asghar S, Hussain A, Ali SM, Khan AK, Magnusson A: Prevalence of depression and diabetes: a population-based study from rural Bangladesh. Diabet Med 2007, 24:872-877.
  • [5]Shomaker LB, Tanofsky-Kraff M, Young-Hyman D, Han JC, Yanoff LB, Brady SM, Yanovski SZ, Yanovski JA: Psychological symptoms and insulin sensitivity in adolescents. Pediatr Diabetes 2010, 11:417-423.
  • [6]Timonen M, Laakso M, Jokelainen J, Rajala U, Meyer-Rochow VB, Keinanen-Kiukaanniemi S: Insulin resistance and depression: cross sectional study. BMJ 2005, 330:17-18.
  • [7]Palinkas LA, Barrett-Connor E, Wingard DL: Type 2 diabetes and depressive symptoms in older adults: a population-based study. Diabet Med 1991, 8:532-539.
  • [8]Talbot F, Nouwen A: A review of the relationship between depression and diabetes in adults: is there a link? Diabetes Care 2000, 23:1556-1562.
  • [9]Loktionov A: Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). J Nutr Biochem 2003, 14:426-451.
  • [10]Hallschmid M, Schultes B: Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 2009, 52:2264-2269.
  • [11]Huang CC, Lee CC, Hsu KS: The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang Gung Med J 2010, 33:115-125.
  • [12]Chiu SL, Chen CM, Cline HT: Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 2008, 58:708-719.
  • [13]Lin CH, Tomioka M, Pereira S, Sellings L, Iino Y, van der Kooy D: Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval. J Neurosci 2010, 30:8001-8011.
  • [14]Kikusui T, Ichikawa S, Mori Y: Maternal deprivation by early weaning increases corticosterone and decreases hippocampal BDNF and neurogenesis in mice. Psychoneuroendocrinology 2009, 34:762-772.
  • [15]Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, et al.: Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131:391-404.
  • [16]Spencer JL, Waters EM, Milner TA, Lee FS, McEwen BS: BDNF variant Val66Met interacts with estrous cycle in the control of hippocampal function. Proc Natl Acad Sci USA 2010, 107:4395-4400.
  • [17]Freude S, Leeser U, Muller M, Hettich MM, Udelhoven M, Schilbach K, Tobe K, Kadowaki T, Kohler C, Schroder H, et al.: IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 2008, 107:907-917.
  • [18]Govind S, Kozma R, Monfries C, Lim L, Ahmed S: Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol 2001, 152:579-594.
  • [19]Zhao WQ, Alkon DL: Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001, 177:125-134.
  • [20]Mufson EJ, Kroin JS, Sendera TJ, Sobreviela T: Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol 1999, 57:451-484.
  • [21]Sun X, Yao H, Douglas RM, Gu XQ, Wang J, Haddad GG: Insulin/PI3K signaling protects dentate neurons from oxygen-glucose deprivation in organotypic slice cultures. J Neurochem 2010, 112:377-388.
  • [22]Kuhad A, Bishnoi M, Tiwari V, Chopra K: Suppression of NF-kappabeta signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav 2009, 92:251-259.
  • [23]van der Heide LP, Ramakers GM, Smidt MP: Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 2006, 79:205-221.
  • [24]Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, France CP, Gore JC, Daws LC, Avison MJ, Galli A: Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 2007, 5:e274.
  • [25]Daws LW, Owens A, Campos P, Gould G, Galli A, France C: Regulation of biogenic amine transporters by insulin. Implications for antidepressant drug efficacy. In Presented at the 48th Annual Meeting of the American College of Neuropsychopharmacology, Hollywood, FL; 2009.
  • [26]Tornqvist HE, Pierce MW, Frackelton AR, Nemenoff RA, Avruch J: Identification of insulin receptor tyrosine residues autophosphorylated in vitro. J Biol Chem 1987, 262:10212-10219.
  • [27]Rosen OM, Herrera R, Olowe Y, Petruzzelli LM, Cobb MH: Phosphorylation activates the insulin receptor tyrosine protein kinase. Proc Natl Acad Sci USA 1983, 80:3237-3240.
  • [28]Storozheva ZI, Proshin AT, Sherstnev VV, Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Semenova NA, Zakharova EI, Pomytkin IA: Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and beta-amyloid peptide-(25–35)-induced amnesia. BMC Pharmacol 2008, 8:1.
  • [29]Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Pomytkin IA: Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. BMC Neurosci 2007, 8:84. BioMed Central Full Text
  • [30]Strum JC, Shehee R, Virley D, Richardson J, Mattie M, Selley P, Ghosh S, Nock C, Saunders A, Roses A: Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007, 11:45-51.
  • [31]Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J: Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J 2006, 20:1162-1175.
  • [32]Saubermann LJ, Nakajima A, Wada K, Zhao S, Terauchi Y, Kadowaki T, Aburatani H, Matsuhashi N, Nagai R, Blumberg RS: Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 2002, 8:330-339.
  • [33]Igarashi M, Hirata A, Yamaguchi H, Jimbu Y, Tominaga M: Pioglitazone reduces atherogenic outcomes in type 2 diabetic patients. J Atheroscler Thromb 2008, 15:34-40.
  • [34]Mittal R, Malhotra S, Pandhi P, Kaur I, Dogra S: Efficacy and safety of combination Acitretin and Pioglitazone therapy in patients with moderate to severe chronic plaque-type psoriasis: a randomized, double-blind, placebo-controlled clinical trial. Arch Dermatol 2009, 145:387-393.
  • [35]Eissa Ahmed AA, Al-Rasheed NM: Antidepressant-like effects of rosiglitazone, a PPARgamma agonist, in the rat forced swim and mouse tail suspension tests. Behav Pharmacol 2009, 20:635-642.
  • [36]Rasgon NL, Kenna HA, Williams KE, Powers B, Wroolie T, Schatzberg AF: Rosiglitazone add-on in treatment of depressed patients with insulin resistance: a pilot study. Sci World J 2010, 10:321-328.
  • [37]Kemp DE, Ismail-Beigi F, Ganocy SJ, Conroy C, Gao K, Obral S, Fein E, Findling RL, Calabrese JR: Use of insulin sensitizers for the treatment of major depressive disorder: a pilot study of pioglitazone for major depression accompanied by abdominal obesity. J Affect Disord 2012, 136:1164-1172.
  • [38]Strekalova T, Steinbusch HW: Measuring behavior in mice with chronic stress depression paradigm. Prog Neuropsychopharmacol Biol Psychiatry 2010, 34:348-361.
  • [39]Strekalova T, Wotjak CT, Schachner M: Intrahippocampal administration of an antibody against the HNK-1 carbohydrate impairs memory consolidation in an inhibitory learning task in mice. Mol Cell Neurosci 2001, 17:1102-1113.
  • [40]Napoli I, Blusztajn JK, Mellott TJ: Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res 2008, 1237:124-135.
  • [41]Gammeltoft S, Fehlmann M, Van Obberghen E: Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie 1985, 67:1147-1153.
  • [42]Mosthaf L, Grako K, Dull TJ, Coussens L, Ullrich A, McClain DA: Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J 1990, 9:2409-2413.
  • [43]Yamaguchi Y, Flier JS, Yokota A, Benecke H, Backer JM, Moller DE: Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology 1991, 129:2058-2066.
  • [44]Denley A, Bonython ER, Booker GW, Cosgrove LJ, Forbes BE, Ward CW, Wallace JC: Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol Endocrinol 2004, 18:2502-2512.
  • [45]Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM: Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 2011, 7:9. BioMed Central Full Text
  • [46]Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P: Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 2004, 29:2007-2017.
  • [47]Hamilton M: Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 1967, 6:278-296.
  • [48]Willner P: Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005, 52:90-110.
  • [49]Willner P, Towell A, Sampson D, Sophokleous S, Muscat R: Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987, 93:358-364.
  • [50]Monleon S, D'Aquila P, Parra A, Simon VM, Brain PF, Willner P: Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl) 1995, 117:453-457.
  • [51]Harkin A, Houlihan DD, Kelly JP: Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J Psychopharmacol 2002, 16:115-123.
  • [52]Strekalova T, Cespuglio R, Kovalzon V: Sleep structure during chronic stress and anhedonia in the mouse model of depression. In Behavioral models in stress research. Volume II edition. Edited by Kalueff AV, LaPorte JL. Nova Science Publishers Inc, New York; 2009:113-129.
  • [53]Strekalova T, Gorenkova N, Schunk E, Dolgov O, Bartsch D: Selective effects of citalopram in a mouse model of stress-induced anhedonia with a control for chronic stress. Behav Pharmacol 2006, 17:271-287.
  • [54]Strekalova T, Steinbusch H: Factors of reproducibility of stress-induced anhedonia in chronic stress depression models in mice. In Mood and Anxiety related phenotypes in mice: characterization using behavioral tests. Edited by Gould TD. Humana Press, Totoway, NJ; 2009:153-176.
  • [55]Nunes J, Correia M, Valenca A, Gorenkova N, Bolkunov A, Redkozubova O, Bachurin S, Steinbusch H, Strekalova T: Behavioral Effects of Chronic Administration of Imipramine With Food and Water in Tests for Depression and Anxiety in Naïve C57BL/6N Mice. EURON School “Drugs and the Brain, an update in Psychopharmacology 2010., 25
  • [56]Kinn Rod AM, Milde AM, Gronli J, Jellestad FK, Sundberg H, Murison R: Long-term effects of footshock and social defeat on anxiety-like behaviours in rats: relationships to pre-stressor plasma corticosterone concentration. Stress 2012, 3:11-13.
  • [57]Buwalda B, Scholte J, de Boer SF, Coppens CM, Koolhaas JM: The acute glucocorticoid stress response does not differentiate between rewarding and aversive social stimuli in rats. Horm Behav 2012, 61:218-226.
  • [58]Miczek KA: A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacology (Berl) 1979, 60:253-259.
  • [59]Blanchard RJ, McKittrick CR, Blanchard DC: Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav 2001, 73:261-271.
  • [60]Sgoifo A, Costoli T, Meerlo P, Buwalda B: Pico'-Alfonso MA, De Boer S, Musso E, Koolhaas J: Individual differences in cardiovascular response to social challenge. Neurosci Biobehav Rev 2005, 29:59-66.
  • [61]Katz RJ: Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 1982, 16:965-968.
  • [62]Strekalova T, Spanagel R, Dolgov O, Bartsch D: Stress-induced hyperlocomotion as a confounding factor in anxiety and depression models in mice. Behav Pharmacol 2005, 16:171-180.
  • [63]Malatynska E, Steinbusch HW, Redkozubova O, Bolkunov A, Kubatiev A, Yeritsyan NB, Vignisse J, Bachurin S, Strekalova T: Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression. Exp Gerontol 2012, 47:552-564.
  • [64]Tokarski K, Draguhn A, Gorenkova N, Schunk E, Kunchulia D, Dolgov O, Steinbusch HM, Strekalova T: Hippocampal plasticity in mice with and without hedonic deficit after stress and pre-treatment by citalopram. Hippocampus (under revision)
  • [65]Harro J, Tonissaar M, Eller M, Kask A, Oreland L: Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res 2001, 899:227-239.
  • [66]Porsolt R, Papp M: CNS – Psychiatric models of disease: depression. In Current Protocols in Pharmacology. Edited by Williams M, Enna SJ, Kenakin T, Ferkany JW. Wiley, New York; 1998:591-598.
  • [67]Bouwer CD, Harvey BH: Phasic craving for carbohydrate observed with citalopram. Int Clin Psychopharmacol 1996, 11:273-278.
  • [68]Dikkes P, Hawkes C, Kar S, Lopez MF: Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Res 2007, 1131:77-87.
  • [69]Boksa P, Zhang Y, Amritraj A, Kar S: Birth insults involving hypoxia produce long-term increases in hippocampal [125I]insulin-like growth factor-I and -II receptor binding in the rat. Neuroscience 2006, 139:451-462.
  • [70]Mackay KB, Loddick SA, Naeve GS, Vana AM, Verge GM, Foster AC: Neuroprotective effects of insulin-like growth factor-binding protein ligand inhibitors in vitro and in vivo. J Cereb Blood Flow Metab 2003, 23:1160-1167.
  • [71]Beggel S, Connon R, Werner I, Geist J: Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat Toxicol 2011, 105:180-188.
  • [72]Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, Haladyniak U, Agbemenyah HY, Zovoilis A, Salinas-Riester G, et al.: A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J 2011, 30:4071-4083.
  • [73]Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson GD Jr, Suh H, Couillard-Despres S, Aigner L, Gage FH, Jessberger S: Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci 2012, 32:3376-3387.
  • [74]Castren E, Rantamaki T: The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 2010, 70:289-297.
  • [75]Mellott TJ, Follettie MT, Diesl V, Hill AA, Lopez-Coviella I, Blusztajn JK: Prenatal choline availability modulates hippocampal and cerebral cortical gene expression. FASEB J 2007, 21:1311-1323.
  • [76]Hawkes C, Kar S: Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. J Comp Neurol 2003, 458:113-127.
  • [77]Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM: A critical role for IGF-II in memory consolidation and enhancement. Nature 2011, 469:491-497.
  • [78]Jang SW, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM, Ye K: N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci USA 2010, 107:3876-3881.
  • [79]Viikki M, Anttila S, Kampman O, Illi A, Huuhka M, Setala-Soikkeli E, Mononen N, Lehtimaki T, Leinonen E: Vascular endothelial growth factor (VEGF) polymorphism is associated with treatment resistant depression. Neurosci Lett 2010, 477:105-108.
  • [80]Amritraj A, Rauw G, Baker GB, Kar S: Leu27 insulin-like growth factor-II, an insulin-like growth factor-II analog, attenuates depolarization-evoked GABA release from adult rat hippocampal and cortical slices. Neuroscience 2010, 170:722-730.
  • [81]Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S: Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J Neurosci 2006, 26:585-596.
  • [82]Kapadia R, Yi JH, Vemuganti R: Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 2008, 13:1813-1826.
  • [83]Jiang Y, Deacon R, Anthony DC, Campbell SJ: Inhibition of peripheral TNF can block the malaise associated with CNS inflammatory diseases. Neurobiol Dis 2008, 32:125-132.
  • [84]Campbell SJ, Deacon RM, Jiang Y, Ferrari C, Pitossi FJ, Anthony DC: Overexpression of IL-1beta by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour. Neurobiol Dis 2007, 27:151-163.
  文献评价指标  
  下载次数:45次 浏览次数:25次