期刊论文详细信息
BMC Research Notes
Investigating genome reduction of Bordetella pertussis using a multiplex PCR-based reverse line blot assay (mPCR/RLB)
Ruiting Lan1  Gwendolyn L Gilbert2  Vitali Sintchenko2  Sophie Octavia1  Connie Lam1 
[1] School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia;Marie Bashir Institute for Emerging Infection and Biosecurity, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
关键词: Evolution;    Genome reduction;    Reverse line blot (RLB);    Bordetella pertussis (B. pertussis);   
Others  :  1127238
DOI  :  10.1186/1756-0500-7-727
 received in 2014-07-15, accepted in 2014-10-02,  发布年份 2014
PDF
【 摘 要 】

Background

The genetic composition of the bacterium causing whooping cough, Bordetella pertussis, has been investigated using microarray studies in order to examine potential genetic contributors to the disease re-emergence in the past decade. Regions of difference (RDs) have been previously identified as clusters of genes flanked by insertion sequences which are variably present in different sets of isolates, and have also been shown to be potential markers of B. pertussis evolution.

This study used microarray data to identify and select a panel of RDs; primers and probes for these RDs were then designed to test for the presence or absence of these regions in a novel and less expensive multiplex PCR-based reverse line blot (mPCR/RLB) assay. By comparing the presence or absence of RDs, we aimed to determine the genomic variability of a diverse collection of B. pertussis strains and how they have changed over time.

Results

A B. pertussis specific mPCR/RLB using 43 genes representing 30 RDs, was developed and used to characterise a set of 42 B. pertussis isolates. When mapped against the previously identified evolutionary relationships of the strains, the losses of two RDs - BP0910A - BP00930 and BP1948-BP1962 - were found to be associated with significant events in B. pertussis history: the loss of BP0910A - BP00930 coincided with introduction of whole cell vaccines in the 1950s while that of BP1948-BP1962 occurred after the introduction of acellular vaccines. The loss of BP1948-BP1962 also coincided with expansion of the most recent B. pertussis strains.

Conclusions

The mPCR/RLB assay offers an inexpensive and fast method of determining the gene content of B. pertussis strains and also confirms that gene losses are an ongoing feature of B. pertussis evolution.

【 授权许可】

   
2014 Lam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150220062520529.pdf 540KB PDF download
Figure 2. 134KB Image download
Figure 1. 149KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR: Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 2005, 1:e45.
  • [2]Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, et al.: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003, 35:32-40.
  • [3]Caro V, Hot D, Guigon G, Hubans C, Arrive M, Soubigou G, Renauld-Mongenie G, Antoine R, Locht C, Lemoine Y, Guiso N: Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. Emerg Infect Dis 2006, 8:2228-2235.
  • [4]King AJ, van Gorkom T, Pennings JL, van der Heide HG, He Q, Diavatopoulos D, Heuvelman K, van Gent M, van Leeuwen K, Mooi FR: Comparative genomic profiling of Dutch clinical Bordetella pertussis isolates using DNA microarrays: identification of genes absent from epidemic strains. BMC Genomics 2008, 9:311. BioMed Central Full Text
  • [5]King AJ, van Gorkom T, van der Heide HG, Advani A, van der Lee S: Changes in the genomic content of circulating Bordetella pertussis strains isolated from the Netherlands, Sweden, Japan and Australia: adaptive evolution or drift? BMC Genomics 2010, 11:64. BioMed Central Full Text
  • [6]Kong F, Gilbert GL: Multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB)–a practical epidemiological and diagnostic tool. Nat Protoc 2006, 1:2668-2680.
  • [7]Kong F, Ma L, Gilbert GL: Simultaneous detection and serotype identification of Streptococcus agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 2005, 54:1133-1138.
  • [8]Kong F, Brown M, Sabananthan A, Zeng X, Gilbert GL: Multiplex PCR-based reverse line blot hybridization assay to identify 23 Streptococcus pneumoniae polysaccharide vaccine serotypes. J Clin Microbiol 2006, 44:1887-1891.
  • [9]Kudinha T, Kong F, Johnson JR, Andrew SD, Anderson P, Gilbert GL: Multiplex PCR-based reverse line blot assay for simultaneous detection of 22 virulence genes in uropathogenic Escherichia coli. Appl Environ Microbiol 2012, 78:1198-1202.
  • [10]Cai Y, Kong F, Wang Q, Tong Z, Sintchenko V, Zeng X, Gilbert GL: Comparison of single- and multilocus sequence typing and toxin gene profiling for characterization of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2007, 45:3302-3308.
  • [11]O’Sullivan MV, Zhou F, Sintchenko V, Gilbert GL: Prospective genotyping of hospital-acquired methicillin-resistant Staphylococcus aureus isolates by use of a novel, highly discriminatory binary typing system. J Clin Microbiol 2012, 50:3513-3519.
  • [12]Gravitt PE, Peyton CL, Apple RJ, Wheeler CM: Genotyping of 27 human papillomavirus types by using L1 consensus PCR products by a single-hybridization, reverse line blot detection method. J Clin Microbiol 1998, 36:3020-3027.
  • [13]Cao Y, Kong F, Zhou F, Xiao M, Wang Q, Duan Y, Kesson AM, McPhie K, Gilbert GL, Dwyer DE: Genotyping of human adenoviruses using a PCR-based reverse line blot hybridisation assay. Pathology 2011, 43:488-494.
  • [14]Octavia S, Maharjan RP, Sintchenko V, Stevenson G, Reeves PR, Gilbert GL, Lan R: Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evol 2011, 28:707-715.
  • [15]van Gent M, Bart MJ, van der Heide HG, Heuvelman KJ, Mooi FR: Small mutations in Bordetella pertussis are associated with selective sweeps. PLoS One 2012, 7:e46407.
  • [16]Brinig MM, Cummings CA, Sanden GN, Stefanelli P, Lawrence A, Relman DA: Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol 2006, 188:2375-2382.
  • [17]Heikkinen E, Xing DK, Olander RM, Hytonen J, Viljanen MK, Mertsola J, He Q: Bordetella pertussis isolates in Finland: serotype and fimbrial expression. BMC Microbiol 2008, 8:162. BioMed Central Full Text
  • [18]Advani A, Van der Heide HG, Hallander HO, Mooi FR: Analysis of Swedish Bordetella pertussis isolates with three typing methods: characterization of an epidemic lineage. J Microbiol Methods 2009, 78:297-301.
  • [19]Heikkinen E, Kallonen T, Saarinen L, Sara R, King AJ, Mooi FR, Soini JT, Mertsola J, He Q: Comparative genomics of Bordetella pertussis reveals progressive gene loss in Finnish strains. PLoS One 2007, 2:e904.
  • [20]Caro V, Elomaa A, Brun D, Mertsola J, He Q, Guiso N: Bordetella pertussis, Finland and France. Emerg Infect Dis 2006, 12:987-989.
  • [21]Lam C, Octavia S, Bahrame Z, Sintchenko V, Gilbert GL, Lan R: Selection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol 2012, 12:492-495.
  • [22]Bouchez V, Caro V, Levillain E, Guigon G, Guiso N: Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. PLoS One 2008, 3:e2437.
  • [23]Tefon BE, Maass S, Ozcengiz E, Becher D, Hecker M, Ozcengiz G: A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine 2011, 29:3583-3595.
  • [24]Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA: Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol 2004, 186:1484-1492.
  • [25]Vallone PM, Butler JM: AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 2004, 37:226-231.
  文献评价指标  
  下载次数:11次 浏览次数:3次