期刊论文详细信息
BMC Genomics
Transcriptome sequencing and analysis of the entomopathogenic fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis
Yu-Guo Zheng2  Mgavi Elombe Brathwaite1  Hong-Yan Wang3  Feng Xu3  Hui Wu3  Xiao-Rui Wang2  Ling-Fang Wu2  Peter James Baker2  Shan Lin2  Zhi-Qiang Liu2 
[1] Polytechnic School of Engineering, New York University, 6 MetroTech Center, Brooklyn 11201, NY, USA;Institute of Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P R China;East China Pharmaceutical Group Limited Co., Ltd, Hangzhou 311000, Zhejiang, P R China
关键词: Gene differential expression;    Metabolic pathways;    Transcriptome sequencing;    Hirsutella sinensis;    Ophiocordyceps sinensis;   
Others  :  1131277
DOI  :  10.1186/s12864-015-1269-y
 received in 2014-07-10, accepted in 2015-01-22,  发布年份 2015
PDF
【 摘 要 】

Background

Ophiocordyceps sinensis, a worm and fungus combined mixture which Hirsutella sinensis is parasitic on the caterpillar body, has been used as a traditional medicine or healthy food in China for thousands of years. H. sinensis is reported as the only correct anamorph of O. sinensis and its main active ingredients are similar to the natural O. sinensis.

Results

H. sinensis L0106, asexual strain of O. sinensis, was isolated and identified in this study. Three transcriptomes of H. sinensis at different cultivation periods (growth period 3d, pre-stable period 6d and stable period 9d) were sequenced for the first time by RNA-Seq method, and 25,511 unigenes (3d), 25,214 unigenes (6d) and 16,245 unigenes (9d) were assembled and obtained, respectively. These unigenes of the three samples were further assembled into 20,822 unigenes (All), and 62.3 percent of unigenes (All) could be annotated based on protein databases. Subsequently, the genes and enzymes involved in the biosynthesis of the active ingredients according to the sequencing and annotation results were predicted. Based on the predictions, we further investigated the interaction of different pathway networks and the corresponding enzymes. Furthermore, the differentially expressed genes (DEGs) of H. sinensis grown during different developmental stages (3d-VS-6d, 3d-VS-9d and 6d-VS-9d) were globally detected and analyzed based on the data from RNA-Seq, and 764 DEGs between 3d and 6d, 1,869 DEGs between 3d and 9d, and 770 DEGs between 6d and 9d were found, respectively.

Conclusions

This work presented here would aid in understanding and carrying out future studies on the genetic basis of H. sinensis and contribute to the further artificial production and application of this organism. This study provided a substantial contribution and basis to further characterize the gene expression profiles of H. sinensis in the metabolic pathways of active ingredients.

【 授权许可】

   
2015 Liu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150301034931611.pdf 1811KB PDF download
Figure 10. 15KB Image download
Figure 9. 19KB Image download
Figure 8. 17KB Image download
Figure 7. 17KB Image download
Figure 6. 13KB Image download
Figure 5. 15KB Image download
Figure 4. 73KB Image download
Figure 3. 71KB Image download
Figure 2. 34KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Jiang Y, Yao YJ: Names related to Cordyceps sinensis anamorph. Mycotaxon 2002, 84:245-54.
  • [2]Dong CH, Yao YJ: Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol 2005, 99(3):483-92.
  • [3]Zhang Y, Li E, Wang C, Li Y, Liu X: Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology 2012, 3(1):2-10.
  • [4]Winkler D: Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of Tibet’s rural economy. Econ Bot 2008, 62(3):291-305.
  • [5]Zhou X, Gong Z, Su Y, Lin J, Tang K: Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmcol 2009, 61(3):279-91.
  • [6]Sharma S: Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: conservation and biotechnological priorities. Curr Sci 2004, 86(12):1614-9.
  • [7]Li C, Li Z, Fan M, Cheng W, Long Y, Ding T, et al.: The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. J Food Compos Anal 2006, 19(8):800-5.
  • [8]Koh JH, Yu KW, Suh HJ, Choi YM, Ahn TS: Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci Biotechnol Biochem 2002, 66(2):407-11.
  • [9]Cheung JK, Li J, Cheung AW, Zhu Y, Zheng KY, Bi CW, et al.: Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: Signaling cascade and induction of cytokines. J Ethnopharmacol 2009, 124(1):61-8.
  • [10]Zhang Y, Liu X, Wang M: Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Res Microbiol 2008, 159(6):462-9.
  • [11]Buenz E, Bauer B, Osmundson T, Motley T: The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J Ethnopharmacol 2005, 96(1):19-29.
  • [12]Chen YQ, Wang N, Qu LH, Li TH, Zhang WM: Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol 2001, 29(6):597-607.
  • [13]Zhao J, Wang N, Chen Y, Li T, Qu L: Molecular identification for the asexual stage of Cordyceps sinensis. Acta Scientiarum Naturalium Universitatis Sunyatseni 1998, 38(1):121-3.
  • [14]Yue GGL, Lau CBS, Fung KP, Leung PC, Ko WH: Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J Ethnopharmacol 2008, 117(1):92-101.
  • [15]Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science 1995, 270(5235):484-6.
  • [16]Bishop J, Morton J, Rosbash M, Richardson M: Three abundance classes in HeLa cell messenger RNA. Nature 1974, 250(463):199-204.
  • [17]Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467-70.
  • [18]Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, et al.: Functional annotation of a full-length mouse cDNA collection. Nature 2001, 409(6821):685-90.
  • [19]Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methdos 2008, 5(7):621-8.
  • [20]Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al.: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456(7221):470-6.
  • [21]Schunter C, Vollmer SV, Macpherson E, Pascual M: Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics 2014, 15:167. BioMed Central Full Text
  • [22]Ma L, Ma Q, Li X, Cheng L, Li K, Li S: Transcriptomic analysis of differentially expressed genes in the Ras1(CA)-overexpressed and wildtype posterior silk glands. BMC Genomics 2014, 15:182. BioMed Central Full Text
  • [23]Fu X, Fu N, Guo S, Yan Z, Xu Y, Hu H, et al.: Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics 2009, 10:161. BioMed Central Full Text
  • [24]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10(1):57-63.
  • [25]Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, et al.: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008, 17(7):1636-47.
  • [26]Maussion G, Yang J, Suderman M, Nagy C, Arnovitz M, Mechawar N, et al.: Functional DNA methylation in a transcript specific 3′UTR region of TrkB associates with suicide. Epigenetics 2014, 9(8):1061-70.
  • [27]Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, et al.: Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 2010, 20(5):646-54.
  • [28]Zhang S, Feng H, Li X, Jin Y, Dong W: Genome research profile of two Cordyceps sinensis cDNA libraries. Chinese Sci Bull 2010, 55(14):1403-11.
  • [29]Black DL: Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003, 72(1):291-336.
  • [30]Stamm S, Ben Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, et al.: Function of alternative splicing. Gene 2005, 344:1-20.
  • [31]Lareau LF, Green RE, Bhatnagar RS, Brenner SE: The evolving roles of alternative splicing. Curr Opin Struc Biol 2004, 14(3):273-82.
  • [32]Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008, 40(12):1413-5.
  • [33]Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al.: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321(5891):956-60.
  • [34]Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al.: mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009, 6(5):377-82.
  • [35]Ner Gaon H, Halachmi R, Savaldi Goldstein S, Rubin E, Ophir R, Fluhr R: Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J 2004, 39(6):877-85.
  • [36]Ho EC, Cahill MJ, Saville BJ: Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison. BMC Genomics 2007, 8(1):334. BioMed Central Full Text
  • [37]Ebbole DJ, Jin Y, Thon M, Pan H, Bhattarai E, Thomas T, et al.: Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol Plant Microbe In 2004, 17(12):1337-47.
  • [38]Wu YL, Sun CR, Pan YJ: Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohyd Polym 2006, 63(2):251-6.
  • [39]Hu X, Zhang YJ, Xiao GH, Zheng P, Xia YL, Zhang XY, et al.: Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Sci Bull 2013, 58(23):2846-54.
  • [40]Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, et al.: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2011, 12(11):R116. BioMed Central Full Text
  • [41]Morozova O, Marra MA: Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92(5):255-64.
  • [42]van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, et al.: Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 2008, 26(10):1161-8.
  • [43]Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al.: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007, 25(2):221-31.
  • [44]Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, et al.: Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 2011, 7(1):e1001264.
  • [45]Stone R: Mycology. Last stand for the body snatcher of the Himalayas? Science 2008, 322(5905):1182.
  • [46]Clarkson JP, Staveley J, Phelps K, Young CS, Whipps JM: Ascospore release and survival in Sclerotinia sclerotiorum. Mycol Res 2003, 107(2):213-22.
  • [47]Zacharuk R: Fine structure of the fungus Metarrhizium anisopliae infecting three species of larval Elateridae (Coleoptera). IV. Development within the host. Can J Microbiol 1971, 17(4):525-9.
  • [48]Zacharuk R: Fine structure of the fungus Metarrhizium anisopliae infecting three species of larval Elateridae (Coleoptera): III. Penetration of the host integument. J Invertebr Pathol 1970, 15(3):372-96.
  • [49]Clarkson JM, Charnley AK: New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 1996, 4(5):197-203.
  • [50]Samuels R, Paterson I: Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Biochem Mol Biol 1995, 110(4):661-9.
  • [51]St L, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW: Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, M. flavoviride, and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl Environ Microbiol 1996, 62(3):907-12.
  • [52]Charnley AK, StLeger RJ: The role of cuticle-degrading enzymes in fungal pathogenesis in insect. In The fungal spore and disease initiation in plants and animals. Edited by Cole GT, Hoch HC. Springer, US; 1991:267-86.
  • [53]Wang ZB, Li N, Wang M, Wang Y, Du L, Ji XF, et al.: Simultaneous determination of nucleosides and their bases in Cordyceps sinensis and its substitutes by matrix solid-phase dispersion extraction and HPLC. J Sep Sci 2013, 36(14):2348-57.
  • [54]Chen PX, Wang SA, Nie SP, Marcone M: Properties of Cordyceps sinensis: A review. J Funct Foods 2013, 5(2):550-69.
  • [55]Nie S, Cui SW, Xie M, Phillips AO, Phillips GO: Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact Carb Diety Fibr 2013, 1(1):38-52.
  • [56]Lennon MB, Suhadolnik RJ: Biosynthesis of 3′-deoxyadenosine by Cordyceps militaris: Mechanism of reduction. Nucleic Acids Protein Synth 1976, 425(4):532-6.
  • [57]Zuo HL, Chen SJ, Zhang DL, Zhao J, Yang FQ, Xia ZN: Quality evaluation of natural Cordyceps sinensis from different collecting places in China by the contents of nucleosides and heavy metals. Anal Methods 2013, 5(20):5450-6.
  • [58]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 2001, 25(4):402-8.
  • [59]Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, et al.: Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 2010, 9(1):73.
  • [60]D’Amico S, Collins T, Marx JC, Feller G, Gerday C: Psychrophilic microorganisms: challenges for life. EMBO Rep 2006, 7(4):385-9.
  • [61]Burke P: Technically speaking: PolyATtract® mRNA Isolation Systems. Promega Notes 1996, 56:27-9.
  • [62]Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, et al.: De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 2010, 11(1):726. BioMed Central Full Text
  • [63]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al.: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36(suppl 1):D480-4.
  • [64]Wagner GP, Kin K, Lynch VJ: Measurement of mRNA abundance using RNA-Seq data: RPKM measure is inconsistent among samples. Theor Biosci 2012, 131(4):281-5.
  • [65]Blencowe BJ: Alternative splicing: New insights from global analyses. Cell 2006, 126(1):37-47.
  • [66]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-11.
  • [67]Reboul J, Vaglio P, Rual JF, Lamesch P, Martinez M, Armstrong CM, et al.: C-elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet 2003, 34(1):35-41.
  • [68]Chong L: Molecular cloning: A laboratory manual, 3rd edition. Science 2001, 292(5516):446.
  文献评价指标  
  下载次数:15次 浏览次数:5次