期刊论文详细信息
BMC Cancer
Radioactive 125I seeds inhibit cell growth and epithelial-mesenchymal transition in human glioblastoma multiforme via a ROS-mediated signaling pathway
Yunhong Tian1  Qiang Xie2  Jie He3  Xiaojun Luo3  Tao Zhou2  Ying Liu2  Zuoping Huang2  Yunming Tian3  Dan Sun2  Kaitai Yao3 
[1] Department of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
[2] Department of Oncology, Armed Police Corps Hospital of Guangdong Province, Guangzhou, People’s Republic of China
[3] Cancer Research Institute, Southern Medical University, Guangzhou 510, 515 Guangdong Province, People’s Republic of China
关键词: Epithelial-mesenchymal transition;    Glioblastoma multiforme;    Radioactive 125I seeds;    Irradiation;   
Others  :  1131649
DOI  :  10.1186/1471-2407-15-1
 received in 2013-08-17, accepted in 2014-11-04,  发布年份 2015
PDF
【 摘 要 】

Background

Glioblastoma multiforme (GBM) is the most common primary central nervous system neoplasm in adults. Radioactive 125I seed implantation has been widely applied in the treatment of cancers. Moreover, previous clinical trials have confirmed that 125I seeds treatment was an effective therapy in GBM. We sought to investigate the effect of 125I seed on GBM cell growth and Epithelial-mesenchymal transition (EMT).

Methods

Cells were exposed to irradiation at different doses. Colony-formation assay, EdU assay, cell cycle analysis, and TUNEL assay were preformed to investigate the radiation sensitivity. The effects of 125I seeds irradiation on EMT were measured by transwell, Boyden and wound-healing assays. The levels of reactive oxygen species (ROS) were measured by DCF-DA assay. Moreover, the radiation sensitivity and EMT were investigated with or without pretreatment with glutathione. Additionally, nude mice with tumors were measured after treated with radiation.

Results

Radioactive 125I seeds are more effective than X-ray irradiation in inhibiting GBM cell growth. Moreover, EMT was effectively inhibited by 125I seed irradiation. A mechanism study indicated that GBM cell growth and EMT inhibition were induced by 125I seeds with the involvement of a ROS-mediated signaling pathway.

Conclusions

Radioactive 125I seeds exhibit novel anticancer activity via a ROS-mediated signaling pathway. These findings have clinical implications for the treatment of patients with GBM by 125I seeds.

【 授权许可】

   
2015 Tian et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150303022952571.pdf 1693KB PDF download
Figure 5. 71KB Image download
Figure 4. 104KB Image download
Figure 3. 144KB Image download
Figure 2. 92KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Meyer MA: Malignant gliomas in adults. N Engl J Med 2008, 359 (5)(17):492-507.
  • [2]Wang Y, Jiang T: Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 2013, 331(2):139-146.
  • [3]Wang JJ, Yuan HS, Li JN, Jiang WJ, Jiang YL, Tian SQ: Interstitial permanent implantation of 125I seeds as salvage therapy for re-recurrent rectal carcinoma. Int J Colorectal Dis 2009, 24(4):391-399.
  • [4]Coatmeur O, Truc G, Barillot I, Horiot JC, Maingon P: Treatment of T1-T2 rectal tumors by contact therapy and interstitial brachytherapy. Radiother Oncol 2004, 70(2):177-182.
  • [5]Jiang YL, Meng N, Wang JJ, Ran WQ, Yuan HS, Qu A, Yang RJ: Percutaneous computed tomography/ultrasonography-guided permanent iodine-125 implantation as salvage therapy for recurrent squamous cell cancers of head and neck. Cancer Biol Ther 2010, 9(12):959-966.
  • [6]Meng N, Jiang YL, Wang JJ, Ran WQ, Yuan HS, Qu A, Jiang P, Yang RJ: Permanent implantation of iodine-125 seeds as a salvage therapy for recurrent head and neck carcinoma after radiotherapy. Cancer Invest 2012, 30(3):236-242.
  • [7]Chan TA, Weingart JD, Parisi M, Hughes MA, Olivi A, Borzillary S, Alahakone D, Detorie NA, Wharam MD, Kleinberg L: Treatment of recurrent glioblastoma multiforme with GliaSite brachytherapy. Int J Radiat Oncol Biol Phys 2005, 62(4):1133-1139.
  • [8]Darakchiev BJ, Albright RE, Breneman JC, Warnick RE: Safety and efficacy of permanent iodine-125 seed implants and carmustine wafers in patients with recurrent glioblastoma multiforme. J Neurosurg 2008, 108(2):236-242.
  • [9]Ruge MI, Simon T, Suchorska B, Lehrke R, Hamisch C, Koerber F, Maarouf M, Treuer H, Berthold F, Sturm V, Voges J: Stereotactic brachytherapy with iodine-125 seeds for the treatment of inoperable low-grade gliomas in children: long-term outcome. J Clin Oncol 2011, 29(31):4151-4159.
  • [10]Lopez WO, Trippel M, Doostkam S, Reithmeier T: Interstitial brachytherapy with iodine-125 seeds for low grade brain stem gliomas in adults: diagnostic and therapeutic intervention in a one-step procedure. Clin Neurol Neurosurg 2013, 115(8):1451-1456.
  • [11]Tian Y, Xie Q, Tian Y, Liu Y, Huang Z, Fan C, Hou B, Sun D, Yao K, Chen T: Radioactive (125)I Seed Inhibits the Cell Growth, Migration, and Invasion of Nasopharyngeal Carcinoma by Triggering DNA Damage and Inactivating VEGF-A/ERK Signaling. PLoS One 2013, 8(9):e74038.
  • [12]Wang J, Liao A, Zhuang H, Zhao Y: The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC-1, at continuous low-dose rates. Cancer Biother Radiopharm 2009, 24(4):409-416.
  • [13]Zhuang HQ, Wang JJ, Liao AY, Wang JD, Zhao Y: The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells. J Exp Clin Cancer Res 2009, 28:12. BioMed Central Full Text
  • [14]Liao A, Wang J, Zhuang H, Zhao Y: Relative biological effectiveness and cell-killing efficacy of continuous low-dose-rate 125I seeds on prostate carcinoma cells in vitro. Integr Cancer Ther 2010, 9(1):59-65.
  • [15]Wu F, Ye X, Wang P, Jung K, Wu C, Douglas D, Kneteman N, Bigras G, Ma Y, Lai R: Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that is dependent on Twist1 and the status of Sox2 transcription activity. BMC Cancer 2013, 13:317. BioMed Central Full Text
  • [16]Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, Davey S, Squire J, Park PC, Feilotter H: EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012, 12:91. BioMed Central Full Text
  • [17]Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119(6):1420-1428.
  • [18]Kahlert UD, Nikkhah G, Maciaczyk J: Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett 2013, 331(2):131-138.
  • [19]Trachootham D, Alexandre J, Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009, 8(7):579-591.
  • [20]Nathan FM, Singh VA, Dhanoa A, Palanisamy UD: Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma. BMC Cancer 2011, 11:382. BioMed Central Full Text
  • [21]Azzam EI, Jay-Gerin JP, Pain D: Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 2012, 327(1–2):48-60.
  • [22]Romilda C, Marika P, Alessandro S, Enrico L, Marina B, Andromachi K, Umberto C, Giacomo Z, Claudia M, Massimo R, Fabio F: Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma. BMC Cancer 2012, 12:177. BioMed Central Full Text
  • [23]Mikkelsen RB, Wardman P: Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003, 22(37):5734-5754.
  • [24]Chen T, Wong YS: Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 2009, 63(2):105-113.
  • [25]Cheng C, Kong X, Wang H, Gan H, Hao Y, Zou W, Wu J, Chi Y, Yang J, Hong Y, Chen K, Gu J: Trihydrophobin 1 Interacts with PAK1 and Regulates ERK/MAPK Activation and Cell Migration. J Biol Chem 2009, 284(13):8786-8796.
  • [26]De Vos M, Schreiber V, Dantzer F: The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 2012, 84(2):137-146.
  • [27]Riffell JL, Lord CJ, Ashworth A: Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 2012, 11(12):923-936.
  • [28]Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A: Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 2010, 107(28):12564-12569.
  • [29]Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005, 352(10):997-1003.
  • [30]Mahabir R, Tanino M, Elmansuri A, Wang L, Kimura T, Itoh T, Ohba Y, Nishihara H, Shirato H, Tsuda M, Tanaka S: Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncol 2014, 16(5):671-685.
  • [31]Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, Inanami O: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 2012, 53(2):260-270.
  • [32]Lemon JA, Rollo CD, Boreham DR: Elevated DNA damage in a mouse model of oxidative stress: impacts of ionizing radiation and a protective dietary supplement. Mutagenesis 2008, 23(6):473-482.
  • [33]Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, Chanvorachote P: Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 2010, 285(50):38832-38840.
  • [34]Stupp R, Tonn JC, Brada M, Pentheroudakis G: High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010, 21(Suppl 5):v190-v193.
  • [35]Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352(10):987-996.
  • [36]Patel S, Breneman JC, Warnick RE, Albright RE Jr, Tobler WD, van Loveren HR, Tew JM Jr: Permanent iodine-125 interstitial implants for the treatment of recurrent glioblastoma multiforme. Neurosurgery 2000, 46(5):1123-1128. discussion 1128–1130
  • [37]Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W: Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 2001, 61(6):2744-2750.
  • [38]Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N: Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 2005, 65(1):113-120.
  • [39]Liu C, Lin J, Zhao L, Yang Y, Gao F, Li B, Cui J, Cai J: Gamma-ray irradiation impairs dendritic cell migration to CCL19 by down-regulation of CCR7 and induction of cell apoptosis. Int J Biol Sci 2011, 7(2):168-179.
  • [40]Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, Seong KM, Kim W, Youn B: PAK1 Tyrosine Phosphorylation Is Required to Induce Epithelial-Mesenchymal Transition and Radioresistance in Lung Cancer Cells. Cancer Res 2014, 74(19):5520-5531.
  • [41]Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V: Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 2013, 12(1):94. BioMed Central Full Text
  • [42]Shao J, Dai Y, Zhao W, Xie J, Xue J, Ye J, Jia L: Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells. Cancer Lett 2013, 330(1):49-56.
  • [43]Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S: CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation 2002, 106(8):981-986.
  • [44]Wernicke AG, Sherr DL, Schwartz TH, Pannullo SC, Stieg PE, Boockvar JA, Moliterno JA, Ivanidze J, Trichter S, Sabbas AM, Parashar B, Nori D: The role of dose escalation with intracavitary brachytherapy in the treatment of localized CNS malignancies: outcomes and toxicities of a prospective study. Brachytherapy 2010, 9(1):91-99.
  文献评价指标  
  下载次数:71次 浏览次数:35次