BMC Evolutionary Biology | |
The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes | |
Jian-Fan Wen1  Jin-Mei Feng2  Hai-Feng Tian2  | |
[1] State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province 650223, China;Graduate School of the Chinese Academy of Sciences, Beijing 100039, China | |
关键词: Eukaryotic evolution; Mitochondrial endosymbiosis; Phylogenetic analysis; Phylogenetic distribution; Cardiolipin synthase; | |
Others : 1141383 DOI : 10.1186/1471-2148-12-32 |
|
received in 2011-09-09, accepted in 2012-03-13, 发布年份 2012 | |
【 摘 要 】
Background
Cardiolipin (CL) is an important component in mitochondrial inner and bacterial membranes. Its appearance in these two biomembranes has been considered as evidence of the endosymbiotic origin of mitochondria. But CL was reported to be synthesized through two distinct enzymes--CLS_cap and CLS_pld in eukaryotes and bacteria. Therefore, how the CL biosynthesis pathway evolved is an interesting question.
Results
Phylogenetic distribution investigation of CL synthase (CLS) showed: most bacteria have CLS_pld pathway, but in partial bacteria including proteobacteria and actinobacteria CLS_cap pathway has already appeared; in eukaryotes, Supergroup Opisthokonta and Archaeplastida, and Subgroup Stramenopiles, which all contain multicellular organisms, possess CLS_cap pathway, while Supergroup Amoebozoa and Excavata and Subgroup Alveolata, which all consist exclusively of unicellular eukaryotes, bear CLS_pld pathway; amitochondriate protists in any supergroups have neither. Phylogenetic analysis indicated the CLS_cap in eukaryotes have the closest relationship with those of alpha proteobacteria, while the CLS_pld in eukaryotes share a common ancestor but have no close correlation with those of any particular bacteria.
Conclusions
The first eukaryote common ancestor (FECA) inherited the CLS_pld from its bacterial ancestor (e. g. the bacterial partner according to any of the hypotheses about eukaryote evolution); later, when the FECA evolved into the last eukaryote common ancestor (LECA), the endosymbiotic mitochondria (alpha proteobacteria) brought in CLS_cap, and then in some LECA individuals the CLS_cap substituted the CLS_pld, and these LECAs would evolve into the protist lineages from which multicellular eukaryotes could arise, while in the other LECAs the CLS_pld was retained and the CLS_cap was lost, and these LECAs would evolve into the protist lineages possessing CLS_pld. Besides, our work indicated CL maturation pathway arose after the emergence of eukaryotes probably through mechanisms such as duplication of other genes, and gene duplication and loss occurred frequently at different lineage levels, increasing the pathway diversity probably to fit the complicated cellular process in various cells. Our work also implies the classification putting Stramenopiles and Alveolata together to form Chromalveolata may be unreasonable; the absence of CL synthesis and maturation pathways in amitochondriate protists is most probably due to secondary loss.
【 授权许可】
2012 Tian et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327034421744.pdf | 717KB | download | |
Figure 4. | 60KB | Image | download |
Figure 3. | 144KB | Image | download |
Figure 2. | 106KB | Image | download |
Figure 1. | 22KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Zhang M, Mileykovskaya E, Dowhan W: Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 2005, 280(33):29403-29408.
- [2]Joshi AS, Zhou JM, Gohil VM, Chen SL, Greenberg ML: Cellular functions of cardiolipin in yeast. Biochimica Et Biophysica Acta-Molecular Cell Research 2009, 1793(1):212-218.
- [3]Koshkin V, Greenberg ML: Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J 2002, 364:317-322.
- [4]Jiang F, Ryan MT, Schlame M, Zhao M, Gu ZM, Klingenberg M, Pfanner N, Greenberg ML: Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 2000, 275(29):22387-22394.
- [5]Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S: Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003, 299(5607):700-704.
- [6]Jormakka M, Byrne B, Iwata S: Formate dehydrogenase--a versatile enzyme in changing environments. Curr Opin Struct Biol 2003, 13(4):418-423.
- [7]Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A: Cardiolipin-based respiratory complex activation in bacteria. Proc Natl Acad Sci USA 2011, 108(19):7781-7786.
- [8]McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR: Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 1999, 96(26):14706-14711.
- [9]Mileykovskaya E, Zhang M, Dowhan W: Cardiolipin in energy transducing membranes. Biochem Mosc 2005, 70(2):154-158.
- [10]Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM: Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol 2007, 64(6):1455-1465.
- [11]Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I: The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci USA 2010, 107(22):10044-10049.
- [12]Corcelli A: The cardiolipin analogues of Archaea. Biochimica et Biophysica Acta-Biomembranes 2009, 1788(10):2101-2106.
- [13]Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H: A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea 2005, 1(6):399-410.
- [14]Nowicki M, Muller F, Frentzen M: Cardiolipin synthase of Arabidopsis thalian. FEBS Lett 2005, 579(10):2161-2165.
- [15]Houtkooper RH, Akbari H, van Lenthe H, Kulik W, Wanders RJA, Frentzen M, Vaz FM: Identification and characterization of human cardiolipin synthase. FEBS Lett 2006, 580(13):3059-3064.
- [16]Schlame M: Thematic review series: glycerolipids--cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 2008, 49(8):1607-1620.
- [17]Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R: Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in Yeast. J Biol Chem 2009, 284(17):11572-11578.
- [18]Malhotra A, Edelman-Novemsky I, Xu Y, Plesken H, Ma JP, Schlame M, Ren MD: Role of calcium-independent phospholipase A(2) in the pathogenesis of Barth syndrome. Proc Natl Acad Sci USA 2009, 106(7):2337-2341.
- [19]Zachman DK, Chicco AJ, McCune SA, Murphy RC, Moore RL, Sparagna GC: The role of calcium-independent phospholipase A(2) in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J Lipid Res 2010, 51(3):525-534.
- [20]Gu ZM, Valianpour F, Chen SL, Vaz FM, Hakkaart GA, Wanders RJA, Greenberg ML: Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol 2004, 51(1):149-158.
- [21]Cao JS, Liu YF, Lockwood J, Burn P, Shi YG: A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA: lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem 2004, 279(30):31727-31734.
- [22]Kutschera U, Niklas KJ: Endosymbiosis, cell evolution, and speciation. Theory Biosci 2005, 124(1):1-24.
- [23]de Andrade Rosa I, Einicker-Lamas M, Roney Bernardo R, Previatto LM, Mohana-Borges R, Morgado-Diaz JA, Benchimol M: Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell 2006, 5(4):784-787.
- [24]Rosa ID, Einicker-Lamas M, Bernardo RR, Benchimol M: Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lambli. Exp Parasitol 2008, 120(3):215-220.
- [25]Guschina IA, Harris KM, Maskrey B, Goldberg B, Lloyd D, Harwood JL: The microaerophilic flagellate, Trichomonas vaginali, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol 2009, 56(1):52-57.
- [26]Benchimol M: Hydrogenosomes under microscopy. Tissue Cell 2009, 41(3):151-168.
- [27]Gillin FD, Reiner DS, McCaffery JM: Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 1996, 50:679-705.
- [28]Cavalier-Smith T: Eukaryotes with no mitochondria. Nature 1987, 326(6111):332-333.
- [29]Cavalier-Smith T: Archaebacteria and Archezoa. Nature 1989, 339(6220):100-101.
- [30]Katayama K, Sakurai I, Wada H: Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 2004, 577(1-2):193-198.
- [31]Sandoval-Calderon M, Geiger O, Guan ZQ, Barona-Gomez F, Sohlenkamp C: A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolo and in most Actinobacteria. J Biol Chem 2009, 284(26):17383-17390.
- [32]Tropp BE: Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta 1997, 1348(1-2):192-200.
- [33]Koprivnjak T, Zhang D, Ernst CM, Peschel A, Nauseef WM, Weiss JP: Characterization of Staphylococcus aureus cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. J Bacteriol 2011, 193(16):4134-4142.
- [34]Tanaka H, Minakami R, Kanaya H, Sumimoto H: Catalytic residues of group VIB calcium-independent phospholipase A2 (iPLA2gamma). Biochem Biophys Res Commun 2004, 320(4):1284-1290.
- [35]Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature 2006, 440(7084):623-630.
- [36]Esser C, Martin W, Dagan T: The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 2007, 3(2):180-184.
- [37]Richards TA, van der Giezen M: Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes. Mol Biol Evol 2006, 23(7):1341-1344.
- [38]Lykidis A: Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res 2007, 46(3-4):171-199.
- [39]Weeks G, Herring FG: The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. J Lipid Res 1980, 21(6):681-686.
- [40]Adosraku RK, Smith JD, Nicolaou A, Gibbons WA: Tetrahymena thermophila: analysis of phospholipids and phosphonolipids by high-field 1H-NMR. Biochim Biophys Acta 1996, 1299(2):167-174.
- [41]Andrews D, Nelson DL: Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta 1979, 550(2):174-187.
- [42]Soudant P, Chu FL, Marty Y: Lipid class composition of the protozoan Perkinsus marinus, an oyster parasite, and its metabolism of a fluorescent phosphatidylcholine analog. Lipids 2000, 35(12):1387-1395.
- [43]Oliveira MM, Timm SL, Costa SC: Lipid composition of Trypanosoma cruzi. Comp Biochem Physiol B 1977, 58(2):195-199.
- [44]Zillig W: Comparative biochemistry of Archaea and Bacteria. Curr Opin Genet Dev 1991, 1(4):544-551.
- [45]Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 2002, 52:297-354.
- [46]Hartman H, Fedorov A: The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 2002, 99(3):1420-1425.
- [47]Horiike T, Hamada K, Kanaya S, Shinozawa T: Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 2001, 3(2):210-214.
- [48]Lake JA, Rivera MC: Was the nucleus the first endosymbiont? Proc Natl Acad Sci USA 1994, 91(8):2880-2881.
- [49]El Alaoui H, Bata J, Bauchart D, Dore JC, Vivares CP: Lipids of three microsporidian species and multivariate analysis of the host-parasite relationship. J Parasitol 2001, 87(3):554-559.
- [50]Haines TH: A new look at Cardiolipin. Biochim Biophys Acta 2009, 1788(10):1997-2002.
- [51]Jakovcic S, Getz GS, Rabinowitz M, Jakob H, Swift H: Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development. J Cell Biol 1971, 48(3):490-502.
- [52]Pereto J, Lopez-Garcia P, Moreira D: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 2004, 29(9):469-477.
- [53]Jenkins CM, Han X, Mancuso DJ, Gross RW: Identification of calcium-independent phospholipase A2 (iPLA2) beta, and not iPLA2gamma, as the mediator of arginine vasopressin-induced arachidonic acid release in A-10 smooth muscle cells. J Biol Chem 2002, 277(36):32807-32814.
- [54]Serfontein J, Nisbet RE, Howe CJ, de Vries PJ: Evolution of the TSC1/TSC2-TOR signaling pathway. Sci Signal 2010, 3(128):ra49.
- [55]Stechmann A, Cavalier-Smith T: Rooting the eukaryote tree by using a derived gene fusion. Science 2002, 297(5578):89-91.
- [56]Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett 2008, 4(4):366-369.
- [57]Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci USA 2009, 106(10):3859-3864.
- [58]Roger AJ: Reconstructing early events in eukaryotic evolution. Am Nat 1999, 154:S146-S163.
- [59]Roger AJ, Clark CG, Doolittle WF: A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginali. Proc Natl Acad Sci USA 1996, 93(25):14618-14622.
- [60]Tovar J, Fischer A, Clark CG: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 1999, 32(5):1013-1021.
- [61]Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM: Mitochondrial remnant organelles of Giardia function in ironsulphur protein maturation. Nature 2003, 426(6963):172-176.
- [62]Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM: Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 2004, 432(7017):618-622.
- [63]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113. BioMed Central Full Text
- [64]Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5(3):e9490.
- [65]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
- [66]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18(5):691-699.
- [67]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008, 57(5):758-771.
- [68]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17(12):1246-1247.