期刊论文详细信息
BMC Microbiology
Inhibitory effects of 405 nm irradiation on Chlamydia trachomatis growth and characterization of the ensuing inflammatory response in HeLa cells
Troy A Skwor3  Justine M Schober4  Mike T Ganger2  Janis T Eells5  Nathan A Aardsma1  Jessica L Zourelias6  Cassandra J Wasson7 
[1]Present address: Department of Pathology, University of Illinois at Chicago, Chicago, IL, 60612, USA
[2]Biology Department, Gannon University, Erie, PA, 16541, USA
[3]Present address: Department of Chemical and Biological Sciences, Rockford College, 5050 E. State St, Rockford, IL, 61108, USA
[4]Department of Urology, University of Pittsburgh Medical Center Hamot, Erie, PA, 16507, USA
[5]Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
[6]Present address: University of Buffalo, Buffalo, NY, 14260, USA
[7]Present address: Midwestern University, Downers Grove, IL, 60515, USA
关键词: Phototherapy;    CCL2;    IL-6;    Chlamydia trachomatis;    405 nm;   
Others  :  1221788
DOI  :  10.1186/1471-2180-12-176
 received in 2012-05-04, accepted in 2012-08-13,  发布年份 2012
PDF
【 摘 要 】

Background

Chlamydia trachomatis is an intracellular bacterium that resides in the conjunctival and reproductive tract mucosae and is responsible for an array of acute and chronic diseases. A percentage of these infections persist even after use of antibiotics, suggesting the need for alternative treatments. Previous studies have demonstrated anti-bacterial effects using different wavelengths of visible light at varying energy densities, though only against extracellular bacteria. We investigated the effects of visible light (405 and 670 nm) irradiation via light emitting diode (LEDs) on chlamydial growth in endocervical epithelial cells, HeLa, during active and penicillin-induced persistent infections. Furthermore, we analyzed the effect of this photo treatment on the ensuing secretion of IL-6 and CCL2, two pro-inflammatory cytokines that have previously been identified as immunopathologic components associated with trichiasis in vivo.

Results

C. trachomatis-infected HeLa cells were treated with 405 or 670 nm irradiation at varying energy densities (0 – 20 J/cm2). Bacterial growth was assessed by quantitative real-time PCR analyzing the 16S: GAPDH ratio, while cell-free supernatants were examined for IL-6 and monocyte chemoattractant protein-1 (CCL2) production. Our results demonstrated a significant dose-dependent inhibitory effect on chlamydial growth during both active and persistent infections following 405 nm irradiation. Diminished bacterial load corresponded to lower IL-6 concentrations, but was not related to CCL2 levels. In vitro modeling of a persistent C. trachomatis infection induced by penicillin demonstrated significantly elevated IL-6 levels compared to C. trachomatis infection alone, though 405 nm irradiation had a minimal effect on this production.

Conclusion

Together these results identify novel inhibitory effects of 405 nm violet light on the bacterial growth of intracellular bacterium C. trachomatis in vitro, which also coincides with diminished levels of the pro-inflammatory cytokine IL-6.

【 授权许可】

   
2012 Wasson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803191531464.pdf 734KB PDF download
Figure 4 . 72KB Image download
Figure 3 . 59KB Image download
Figure 2 . 43KB Image download
Figure 1 . 66KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

【 参考文献 】
  • [1]Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP: Global data on visual impairment in the year 2002. Bull World Health Organ 2004, 82(11):844-851.
  • [2]Dean D, Kandel RP, Adhikari HK, Hessel T: Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control. PLoS Med 2008, 5(1):e14.
  • [3]Gerbase AC, Rowley JT, Mertens TE: Global epidemiology of sexually transmitted diseases. Lancet 1998, 351(Suppl 3):2-4.
  • [4]Dean D: Chlamydia trachomatis Sexually Transmitted Diseases. In Pathology of Infectious Diseases. Volume 1. Edited by Conner DH, Schwartz DA, Chandler FW. Appleton and Lange Publishers, Stamford, CT; 1997:473-490.
  • [5]Brunham RC, Rey-Ladino J: Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 2005, 5(2):149-161.
  • [6]Peipert JF: Clinical practice. Genital chlamydial infections. N Engl J Med 2003, 349(25):2424-2430.
  • [7]Beatty WL, Morrison RP, Byrne GI: Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 1994, 58(4):686-699.
  • [8]Rasmussen SJ, Eckmann L, Quayle AJ, Shen L, Zhang YX, Anderson DJ, Fierer J, Stephens RS, Kagnoff MF: Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 1997, 99(1):77-87.
  • [9]Lu H, Shen C, Brunham RC: Chlamydia trachomatis infection of epithelial cells induces the activation of caspase-1 and release of mature IL-18. J Immunol 2000, 165(3):1463-1469.
  • [10]Hess S, Rheinheimer C, Tidow F, Bartling G, Kaps C, Lauber J, Buer J, Klos A: The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes. Arthritis Rheum 2001, 44(10):2392-2401.
  • [11]Wang Y, Nagarajan U, Hennings L, Bowlin AK, Rank RG: Local host response to chlamydial urethral infection in male guinea pigs. Infect Immun 2010, 78(4):1670-1681.
  • [12]Agrawal T, Gupta R, Dutta R, Srivastava P, Bhengraj AR, Salhan S, Mittal A: Protective or pathogenic immune response to genital chlamydial infection in women–a possible role of cytokine secretion profile of cervical mucosal cells. Clin Immunol 2009, 130(3):347-354.
  • [13]Skwor TA, Atik B, Kandel RP, Adhikari HK, Sharma B, Dean D: Role of secreted conjunctival mucosal cytokine and chemokine proteins in different stages of trachomatous disease. PLoS Negl Trop Dis 2008, 2(7):e264.
  • [14]Darville T, O'Neill JM, Andrews CW, Nagarajan UM, Stahl L, Ojcius DM: Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J Immunol 2003, 171(11):6187-6197.
  • [15]Bailey RL, Arullendran P, Whittle HC, Mabey DC: Randomised controlled trial of single-dose azithromycin in treatment of trachoma. Lancet 1993, 342(8869):453-456.
  • [16]Burton MJ, Holland MJ, Makalo P, Aryee EA, Alexander ND, Sillah A, Faal H, West SK, Foster A, Johnson GJ, et al.: Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet 2005, 365(9467):1321-1328.
  • [17]West SK, Munoz B, Mkocha H, Holland MJ, Aguirre A, Solomon AW, Foster A, Bailey RL, Mabey DC: Infection with Chlamydia trachomatis after mass treatment of a trachoma hyperendemic community in Tanzania: a longitudinal study. Lancet 2005, 366(9493):1296-1300.
  • [18]Melese M, Chidambaram JD, Alemayehu W, Lee DC, Yi EH, Cevallos V, Zhou Z, Donnellan C, Saidel M, Whitcher JP, et al.: Feasibility of eliminating ocular Chlamydia trachomatis with repeat mass antibiotic treatments. JAMA 2004, 292(6):721-725.
  • [19]Atik B, Thanh TT, Luong VQ, Lagree S, Dean D: Impact of annual targeted treatment on infectious trachoma and susceptibility to reinfection. Jama 2006, 296(12):1488-1497.
  • [20]Zhang H, Kandel RP, Sharma B, Dean D: Risk factors for recurrence of postoperative trichiasis: implications for trachoma blindness prevention. Arch Ophthalmol 2004, 122(4):511-516.
  • [21]West ES, Mkocha H, Munoz B, Mabey D, Foster A, Bailey R, West SK: Risk factors for postsurgical trichiasis recurrence in a trachoma-endemic area. Invest Ophthalmol Vis Sci 2005, 46(2):447-453.
  • [22]Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML: The unexpected impact of a Chlamydia trachomatis infection control program on susceptibility to reinfection. J Infect Dis 2005, 192(10):1836-1844.
  • [23]Huang YY, Chen AC, Carroll JD, Hamblin MR: Biphasic dose response in low level light therapy. Dose-Response 2009, 7(4):358-383.
  • [24]Maclean M, MacGregor SJ, Anderson JG, Woolsey G: Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl Environ Microbiol 2009, 75(7):1932-1937.
  • [25]Hamblin MR, Viveiros J, Yang C, Ahmadi A, Ganz RA, Tolkoff MJ: Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob Agents Chemother 2005, 49(7):2822-2827.
  • [26]Guffey JS, Wilborn J: In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 2006, 24(6):684-688.
  • [27]Nitzan Y, Ashkenazi H: Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 2001, 42(6):408-414.
  • [28]Maisch T: Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 2007, 22(2):83-91.
  • [29]Belay T, Eko FO, Ananaba GA, Bowers S, Moore T, Lyn D, Igietseme JU: Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect Immun 2002, 70(2):844-850.
  • [30]Yamada Y, Matsumoto K, Hashimoto N, Saikusa M, Homma T, Yoshihara S, Saito H: Effect of Th1/Th2 cytokine pretreatment on RSV-induced gene expression in airway epithelial cells. Int Arch Allergy Immunol 2011, 154(3):185-194.
  • [31]Nanagara R, Li F, Beutler A, Hudson A, Schumacher HR: Alteration of Chlamydia trachomatis biologic behavior in synovial membranes. Suppression of surface antigen production in reactive arthritis and Reiter's syndrome. Arthritis Rheum 1995, 38(10):1410-1417.
  • [32]Patton DL, Askienazy-Elbhar M, Henry-Suchet J, Campbell LA, Cappuccio A, Tannous W, Wang SP, Kuo CC: Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility. Am J Obstet Gynecol 1994, 171(1):95-101.
  • [33]Batteiger BE, Tu W, Ofner S, Van Der Pol B, Stothard DR, Orr DP, Katz BP, Fortenberry JD: Repeated Chlamydia trachomatis genital infections in adolescent women. J Infect Dis 2010, 201(1):42-51.
  • [34]Golden MR, Whittington WL, Handsfield HH, Hughes JP, Stamm WE, Hogben M, Clark A, Malinski C, Helmers JR, Thomas KK, et al.: Effect of expedited treatment of sex partners on recurrent or persistent gonorrhea or chlamydial infection. N Engl J Med 2005, 352(7):676-685.
  • [35]Elman M, Slatkine M, Harth Y: The effective treatment of acne vulgaris by a high-intensity, narrow band 405-420 nm light source. J Cosmet Laser Ther 2003, 5(2):111-117.
  • [36]Lembo AJ, Ganz RA, Sheth S, Cave D, Kelly C, Levin P, Kazlas PT, Baldwin PC, Lindmark WR, McGrath JR, et al.: Treatment of Helicobacter pylori infection with intra-gastric violet light phototherapy: a pilot clinical trial. Lasers Surg Med 2009, 41(5):337-344.
  • [37]Murdoch LE, Maclean M, MacGregor SJ, Anderson JG: Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathog Dis 2010, 7(10):1211-1216.
  • [38]Maclean M, Macgregor SJ, Anderson JG, Woolsey GA: The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B 2008, 92(3):180-184.
  • [39]Ashkenazi H, Malik Z, Harth Y, Nitzan Y: Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol 2003, 35(1):17-24.
  • [40]Boncompain G, Schneider B, Delevoye C, Kellermann O, Dautry-Varsat A, Subtil A: Production of reactive oxygen species is turned on and rapidly shut down in epithelial cells infected with Chlamydia trachomatis. Infect Immun 2010, 78(1):80-87.
  • [41]Dong F, Su H, Huang Y, Zhong Y, Zhong G: Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect Immun 2004, 72(7):3863-3868.
  • [42]Zhong G, Fan P, Ji H, Dong F, Huang Y: Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 2001, 193(8):935-942.
  • [43]Sun J, Schoborg RV: The host adherens junction molecule nectin-1 is degraded by chlamydial protease-like activity factor (CPAF) in Chlamydia trachomatis-infected genital epithelial cells. Microbes Infect 2009, 11(1):12-19.
  • [44]Pirbhai M, Dong F, Zhong Y, Pan KZ, Zhong G: The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 2006, 281(42):31495-31501.
  • [45]Soriano D, Hugol D, Quang NT, Darai E: Serum concentrations of interleukin-2R (IL-2R), IL-6, IL-8, and tumor necrosis factor alpha in patients with ectopic pregnancy. Fertil Steril 2003, 79(4):975-980.
  • [46]Nazmi A, Diez-Roux AV, Jenny NS, Tsai MY, Szklo M, Aiello AE: The influence of persistent pathogens on circulating levels of inflammatory markers: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis. BMC Publ Health 2010, 10:706. BioMed Central Full Text
  • [47]Van Voorhis WC, Barrett LK, Sweeney YT, Kuo CC, Patton DL: Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect Immun 1997, 65(6):2175-2182.
  • [48]Peters J, Hess S, Endlich K, Thalmann J, Holzberg D, Kracht M, Schaefer M, Bartling G, Klos A: Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Cell Microbiol 2005, 7(8):1099-1108.
  • [49]Wang J, Frohlich KJ, Buckner L, Quayle AJ, Luo M, Feng X, Beatty W, Hua Z, Rao X, Lewis ME, et al.: Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. Microbiology 2011, 157(10):2759-2771.
  • [50]Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, Carabeo RA, Hackstadt T: A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 2004, 101(27):10166-10171.
  • [51]Lei L, Qi M, Budrys N, Schenken R, Zhong G: Localization of Chlamydia trachomatis hypothetical protein CT311 in host cell cytoplasm. Microb Pathog 2011, 51(3):101-109.
  • [52]Qi M, Lei L, Gong S, Liu Q, DeLisa MP, Zhong G: Chlamydia trachomatis secretion of an immunodominant hypothetical protein (CT795) into host cell cytoplasm. J Bacteriol 2011, 193(10):2498-2509.
  • [53]Wlaschek M, Bolsen K, Herrmann G, Schwarz A, Wilmroth F, Heinrich PC, Goerz G, Scharffetter-Kochanek K: UVA-induced autocrine stimulation of fibroblast-derived-collagenase by IL-6: a possible mechanism in dermal photodamage? J Invest Dermatol 1993, 101(2):164-168.
  • [54]Wlaschek M, Heinen G, Poswig A, Schwarz A, Krieg T, Scharffetter-Kochanek K: UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem Photobiol 1994, 59(5):550-556.
  • [55]Imokawa G, Yada Y, Kimura M, Morisaki N: Granulocyte/macrophage colony-stimulating factor is an intrinsic keratinocyte-derived growth factor for human melanocytes in UVA-induced melanosis. Biochem J 1996, 313(Pt 2):625-631.
  • [56]Dean D, Powers VC: Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 2001, 69(4):2442-2447.
  • [57]Somboonna N, Wan R, Ojcius DM, Pettengill MA, Joseph SJ, Chang A, Hsu R, Read TD, Dean D: Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L2) and D lineages. MBio 2011, 2(3):e00045-11.
  • [58]Liang HL, Whelan HT, Eells JT, Wong-Riley MT: Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 2008, 153(4):963-974.
  • [59]Johnson BV, Bert AG, Ryan GR, Condina A, Cockerill PN: Granulocyte-macrophage colony-stimulating factor enhancer activation requires cooperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization. Mol Cell Biol 2004, 24(18):7914-7930.
  • [60]Goldschmidt P, Rostane H, Sow M, Goepogui A, Batellier L, Chaumeil C: Detection by broad-range real-time PCR assay of Chlamydia species infecting human and animals. Br J Ophthalmol 2006, 90(11):1425-1429.
  • [61]Sokal R, Rohlf F: Biometry. 3rd edition. W.H. Freeman Company, New York; 1995.
  文献评价指标  
  下载次数:36次 浏览次数:16次