期刊论文详细信息
BMC Cancer
Promoting E2F1-mediated apoptosis in oestrogen receptor-α-negative breast cancer cells
María F Montenegro2  María del Mar Collado-González2  María Piedad Fernández-Pérez2  Manel B Hammouda2  Lana Tolordava1  Mariam Gamkrelidze1  José Neptuno Rodríguez-López2 
[1] Durmishidze Institute of Biochemistry and Biotechnology of Agrarian University of Georgia, 0131 Tbilisi, Georgia
[2] Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Espinardo, Murcia, Spain
关键词: Apoptosis;    4-Hydroxy-tamoxifen;    E2F1;    Oestrogen receptor α;    Breast cancer;   
Others  :  1125295
DOI  :  10.1186/1471-2407-14-539
 received in 2013-12-13, accepted in 2014-07-22,  发布年份 2014
PDF
【 摘 要 】

Background

Because oestrogen receptor α (ERα) regulates E2F1 expression to mediate tamoxifen resistance in ERα-positive breast cancer cells, we aimed to define the possible roles of ERα and E2F1 in promoting the resistance of ERα-negative breast cancer cells to 4-hydroxy-tamoxifen (4OHT).

Methods

This study utilised conventional techniques to demonstrate the effects of 4OHT on the expression of ERα and E2F1 and also examined the individual and combined effects of 4OHT with dipyridamole (DIPY) and 3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin (TMCG) on the oestrogen-negative MDA-MB-231 breast cancer cell line using viability assays, Hoechst staining, MALDI-TOF mass spectroscopy, and confocal microscopy.

Results

Despite the ERα-negative status of the MDA-MB-231 cells, we observed that 4OHT efficiently up-regulated ERα in these cells and that this upregulation promoted E2F1-mediated cell growth. Because E2F1 plays a dual role in cell growth/apoptosis, we designed a therapy incorporating TMCG/DIPY to take advantage of the elevated E2F1 expression in these 4OHT-treated cells. 4OHT enhances the toxicity of TMCG/DIPY in these ERα-negative breast cancer cells.

Conclusions

Because TMCG/DIPY treatment modulates the methylation status/stability of E2F1, the results demonstrate that therapies targeting the epigenetic machinery of cancer cells in the presence of overexpressed E2F1 may result in efficient E2F1-mediated cell death.

【 授权许可】

   
2014 Montenegro et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150217014404499.pdf 2209KB PDF download
Figure 6. 137KB Image download
Figure 5. 116KB Image download
Figure 4. 155KB Image download
Figure 3. 67KB Image download
Figure 2. 115KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dorssers LC, Van der Flier S, Brinkman A, van Agthoven T, Veldscholte J, Berns EM, Klijn JG, Beex LV, Foekens JA: Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs 2001, 61:1721-1733.
  • [2]Osborne CH, Schiff R: Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011, 62:233-247.
  • [3]Jiang Q, Zheng S, Wang G: Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer. Future Med Chem 2013, 5:1023-1035.
  • [4]Caldon CE, Daly RJ, Sutherland RL, Musgrove EA: Cell cycle control in breast cancer cells. J Cell Biochem 2006, 97:261-274.
  • [5]Samaddar JS, Gaddy VT, Duplantier J, Thandavan SP, Shah M, Smith MJ, Browning D, Rawson J, Smith SB, Barrett JT, Schoenlein PV: A role for macroautophagy in protection against 4-hydroxytamoxifen–induced cell death and the development of antiestrogen resistance. Mol Cancer Ther 2008, 7:2977-2987.
  • [6]Charalambous C, Pitta CA, Constantinou AI: Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer 2013, 13:238.
  • [7]Lebedeva G, Yamaguchi A, Langdon SP, Macleod K, Harrison DJ: A model of estrogen-related gene expression reveals non-linear effects in transcriptional response to tamoxifen. BMC Syst Biol 2012, 6:138.
  • [8]Osborne CK, Boldt DH, Clark GM, Trent JM: Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 1983, 43:3583-3585.
  • [9]Sutherland RL, Hall RE, Taylor IW: Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Res 1983, 43:3998-4006.
  • [10]Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL: Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 2003, 10:179-186.
  • [11]Droog M, Beelen K, Linn S, Zwart W: Tamoxifen resistance: from bench to bedside. Eur J Pharmacol 2013, 717:47-57.
  • [12]Bianco S, Gévry N: Endocrine resistance in breast cancer: from cellular signaling pathways to epigenetic mechanisms. Transcr 2012, 3:165-170.
  • [13]Zhang X, Ding L, Kang L, Wang ZY: Estrogen receptor-alpha 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells. PLoS One 2012, 7:e30174.
  • [14]Montenegro MF, Sáez-Ayala M, Piñero-Madrona A, Cabezas-Herrera J, Rodríguez-López JN: Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 2012, 7:e52231.
  • [15]Tian Y, Hou Y, Zhou X, Cheng H, Zhou R: Tumor suppressor RASSF1A promoter: p53 binding and methylation. PLoS One 2011, 6:e17017.
  • [16]Lewis-Wambi JS, Jordan VC: Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 2009, 11:206.
  • [17]Louie MC, McClellan A, Siewit C, Kawabata L: Estrogen receptor regulates E2F1 expression to mediate tamoxifen resistance. Mol Cancer Res 2010, 8:343-352.
  • [18]Sáez-Ayala M, Sánchez-del-Campo L, Montenegro MF, Chazarra S, Tárraga A, Cabezas-Herrera J, Rodríguez-López JN: Comparison of a pair of synthetic tea-catechin-derived epimers: synthesis, antifolate activity, and tyrosinase-mediated activation in melanoma. ChemMedChem 2011, 6:440-449.
  • [19]Sanchez-del-Campo L, Rodriguez-Lopez JN: Targeting the methionine cycle for melanoma therapy with 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin. Int J Cancer 2008, 123:2446-2455.
  • [20]Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68:850-858.
  • [21]Madeira M, Mattar A, Logullo AF, Soares FA, Gebrim LH: Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer 2013, 13:425.
  • [22]Sharma D, Saxena NK, Davidson NE, Vertino PM: Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 2006, 66:6370-6378.
  • [23]Thomas RS, Sarwar N, Phoenix F, Coombes RC, Ali S: Phosphorylation at serines 104 and 106 by Erk1/2 MAPK is important for estrogen receptor-alpha activity. J Mol Endocrinol 2008, 40:173-184.
  • [24]Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Ström A, Treuter E, Warner M, Gustafsson JA: Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007, 87:905-931.
  • [25]Pink JJ, Jordan VC: Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res 1996, 56:2321-2330.
  • [26]Rochefort H, Glondu M, Sahla ME, Platet N, Garcia M: How to target estrogen receptor-negative breast cancer? Endocr Relat Cancer 2003, 10:261-266.
  • [27]Gottardis MM, Jordan VC: Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 1988, 48:5183-5187.
  • [28]Sipila PE, Wiebe VJ, Hubbard GB, Koester SK, Emshoff VD, Maenpaa JU, Wurz GT, Seymour RC, DeGregorio MW: Prolonged tamoxifen exposure selects a breast cancer cell clone that is stable in vitro and in vivo. Eur J Cancer 1993, 29A:2138-2144.
  • [29]Dong C, Wu Y, Yao J, Wang Y, Yu Y, Rychahou PG, Evers BM, Zhou BP: G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J Clin Invest 2012, 122:1469-1486.
  • [30]Zivadinovic D, Watson CS: Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast Cancer Res 2005, 7:R130-R144.
  • [31]Ford CH, Al-Bader M, Al-Ayadhi B, Francis I: Reassessment of estrogen receptor expression in human breast cancer cell lines. Anticancer Res 2011, 31:521-527.
  • [32]Ford CE, Ekström EJ, Andersson T: Wnt-5a signaling restores tamoxifen sensitivity in estrogen receptor-negative breast cancer cells. Proc Natl Acad Sci U S A 2009, 106:3919-3924.
  • [33]Yeh WL, Shioda K, Coser KR, Rivizzigno D, McSweeney KR, Shioda T: Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS One 2013, 8:e60889.
  • [34]Louie MC, Zou JX, Rabinovich A, Chen HW: ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol 2004, 24:5157-5171.
  • [35]Cam H, Dynlacht BD: Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 2003, 3:311-316.
  • [36]Kim K, Thu N, Saville B, Safe S: Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells. Mol Endocrinol 2003, 17:804-817.
  • [37]Campanero MR, Armstrong MI, Flemington EK: CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 2000, 97:6481-6486.
  • [38]Wang A, Li CJ, Reddy PV, Pardee AB: Cancer chemotherapy by deoxynucleotide depletion and E2F-1 elevation. Cancer Res 2005, 65:7809-7814.
  • [39]Kontaki H, Talianidis I: Lysine methylation regulates E2F1-induced cell death. Mol Cell 2010, 39:152-160.
  • [40]Kontaki H, Talianidis I: Cross-talk between post-translational modifications regulate life or death decisions by E2F1. Cell Cycle 2010, 9:3836-3837.
  • [41]Martínez-Balbás MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T: Regulation of E2F1 activity by acetylation. EMBO J 2000, 19:662-671.
  • [42]Urist M, Tanaka T, Poyurovsky MV, Prives C: p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 2004, 18:3041-3054.
  • [43]Lin WC, Lin FT, Nevins JR: Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 2001, 15:1833-1844.
  • [44]Sáez-Ayala M, Montenegro MF, Sánchez-Del-Campo L, Fernández-Pérez MP, Chazarra S, Freter R, Middleton M, Piñero-Madrona A, Cabezas-Herrera J, Goding CR, Rodríguez-López JN: Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell 2013, 24:105-119.
  文献评价指标  
  下载次数:67次 浏览次数:14次