期刊论文详细信息
BMC Gastroenterology
Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells
Yi-Tsau Huang3  Jaw-Ching Wu4  Kuo-Ching Yang7  Yung-Tsung Chiu2  Yun Lin6  Ting-Fang Lee1  Yi-Chao Hsu5  Lee-Won Chong7 
[1] Institute of Clinical Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan;Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan;Institute of Traditional Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan;Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan;Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan;National Research Institute of Chinese Medicine, No. 155-1, Li-Nong Street, Sec. 2, Taipei 112, Taiwan;Division of Hepatology and Gastroenterology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
关键词: Paracrine effect;    Hepatocyte;    Fibrogenesis;    Statins;    Steatohepatitis;    Non-alcoholic fatty liver disease;   
Others  :  1137276
DOI  :  10.1186/s12876-015-0248-8
 received in 2014-07-19, accepted in 2015-02-03,  发布年份 2015
PDF
【 摘 要 】

Background

Non-alcoholic steatohepatitis (NASH) is associated with hepatic fibrogenesis. Despite well-known cholesterol-lowering action of statins, their mechanisms against NASH-mediated fibrogenesis remain unclear. This study aimed at investigating the in vitro and in vivo anti-fibrotic properties of fluvastatin (Flu).

Methods

Palmitate (PA)-induced changes in intracellular hydrogen peroxide levels in primary rat hepatocytes (PRHs) and human hepatoma cell line (HepG2) were quantified by dichlorofluorescein diacetate (DCF-DA) dye assay, whereas changes in expressions of NADPH oxidase gp91phox subunit, α-smooth muscle actin (α-SMA), and NFκB p65 nuclear translocation were quantified with Western blotting. Quantitative real-time polymerase chain reaction (q-PCR) was used to investigate mRNA expressions of pro-inflammatory genes (ICAM-1, IL-6, TNF-α). Conditioned medium (CM) from PA-treated PRHs was applied to cultured rat hepatic stellate cell line, HSC-T6, with or without Flu-pretreatment for 2 h. Pro-fibrogenic gene expressions (COL1, TIMP-1, TGF-β1, α-SMA) and protein expression of α-SMA were analyzed. In vivo study using choline-deficient L-amino acid defined (CDAA) diet-induced rat NASH model was performed by randomly assigning Wistar rats (n = 28) to normal controls (n = 4), CDAA diet with vehicles, and CDAA diet with Flu (5 mg/kg or 10 mg/kg) (n = 8 each) through gavage for 4 or 8 weeks. Livers were harvested for histological, Western blot (α-SMA), and q-PCR analyses for expressions of pro-inflammatory (IL-6, iNOS, ICAM-1) and pro-fibrogenic (Col1, α-SMA, TIMP-1) genes.

Results

In vitro, Flu (1–20 μM) inhibited PA-induced free-radical production, gp91phox expression, and NFκB p65 translocation in HepG2 and PRHs, while CM-induced α-SMA protein expression and pro-fibrogenic gene expressions in HSC-T6 were suppressed in Flu-pretreated cells compared to those without pretreatment. Moreover, α-SMA protein expression was significantly decreased in HSC-T6 cultured with CM from PA-Flu-treated PRHs compared to those cultured with CM from PA-treated PRHs. Flu also reduced steatosis and fibrosis scores, α-SMA protein expression, mRNA expression of pro-inflammatory and pro-fibrogenic genes in livers of CDAA rats.

Conclusions

We demonstrated PA-induced HSC activation through paracrine effect of hepatocyte in vitro that was significantly suppressed by pre-treating HSC with Flu. In vivo, Flu alleviated steatosis-induced HSC activation and hepatic fibrogenesis through mitigating inflammation and oxidative stress, suggesting possible therapeutic role of Flu against NASH.

【 授权许可】

   
2015 Chong et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150316011057452.pdf 3283KB PDF download
Figure 6. 14KB Image download
Figure 5. 44KB Image download
Figure 4. 93KB Image download
Figure 3. 67KB Image download
Figure 2. 75KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Angulo P: Nonalcoholic fatty liver disease. N Engl J Med 2002, 346(16):1221-31.
  • [2]Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L: Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 2009, 87(7):679-95.
  • [3]Leamy AK, Egnatchik RA, Young JD: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 2013, 52(1):165-74.
  • [4]Chavez-Tapia NC, Rosso N, Tiribelli C: Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease. BMC Gastroenterol 2012, 12:20. BioMed Central Full Text
  • [5]Sumida Y, Niki E, Naito Y, Yoshikawa T: Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res 2013, 47(11):869-80.
  • [6]Paik YH, Kim J, Aoyama T, De Minicis S, Bataller R, Brenner DA: Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal 2014, 20(17):2854-72.
  • [7]Cao S, Zhang X, Edwards JP, Mosser DM: NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 2006, 281(36):26041-50.
  • [8]Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M: Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm (Lond) 2014, 11:23. BioMed Central Full Text
  • [9]Salamone F, Galvano F, Cappello F, Mangiameli A, Barbagallo I, Li Volti G: Silibinin modulates lipid homeostasis and inhibits nuclear factor kappa B activation in experimental nonalcoholic steatohepatitis. Transl Res 2012, 159(6):477-86.
  • [10]Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366(9493):1267-78.
  • [11]Roglans N, Sanguino E, Peris C, Alegret M, Vazquez M, Adzet T, et al.: Atorvastatin treatment induced peroxisome proliferator-activated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 2002, 302(1):232-9.
  • [12]Egawa T, Toda K, Nemoto Y, Ono M, Akisaw N, Saibara T, et al.: Pitavastatin ameliorates severe hepatic steatosis in aromatase-deficient (Ar−/−) mice. Lipids 2003, 38(5):519-23.
  • [13]Gomez-Dominguez E, Gisbert JP, Moreno-Monteagudo JA, Garcia-Buey L, Moreno-Otero R: A pilot study of atorvastatin treatment in dyslipemid, non-alcoholic fatty liver patients. Aliment Pharmacol Ther 2006, 23(11):1643-7.
  • [14]Hyogo H, Tazuma S, Arihiro K, Iwamoto K, Nabeshima Y, Inoue M, et al.: Efficacy of atorvastatin for the treatment of nonalcoholic steatohepatitis with dyslipidemia. Metabolism 2008, 57(12):1711-8.
  • [15]Lin YL, Wu CH, Luo MH, Huang YJ, Wang CN, Shiao MS, et al.: In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. J Ethnopharmacol 2006, 105(1–2):215-22.
  • [16]Parkes JG, Templeton DM: Effects of retinol and hepatocyte-conditioned medium on cultured rat hepatic stellate cells. Ann Clin Lab Sci 2003, 33(3):295-305.
  • [17]Vogel S, Piantedosi R, Frank J, Lalazar A, Rockey DC, Friedman SL, et al.: An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res 2000, 41(6):882-93.
  • [18]Chong LW, Hsu YC, Chiu YT, Yang KC, Huang YT: Anti-fibrotic effects of thalidomide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats. J Biomed Sci 2006, 13(3):403-18.
  • [19]Chong LW, Hsu YC, Chiu YT, Yang KC, Huang YT: Antifibrotic effects of triptolide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats. Phytother Res 2011, 25(7):990-9.
  • [20]Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Buttner R, et al.: Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res 2009, 19(8):996-1005.
  • [21]Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, et al.: Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 2003, 18(11):1272-82.
  • [22]Takeuchi-Yorimoto A, Noto T, Yamada A, Miyamae Y, Oishi Y, Matsumoto M: Persistent fibrosis in the liver of choline-deficient and iron-supplemented l-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation. Toxicol Appl Pharmacol 2013, 268(3):264-77.
  • [23]Tsai MK, Lin YL, Huang YT: Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats. Toxicol Appl Pharmacol 2010, 242(2):155-64.
  • [24]Lopez-De Leon A, Rojkind M: A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 1985, 33(8):737-43.
  • [25]Brunt EM: Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010, 7(4):195-203.
  • [26]Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al.: Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41(6):1313-21.
  • [27]De Minicis S, Bataller R, Brenner DA: NADPH oxidase in the liver: defensive, offensive, or fibrogenic? Gastroenterology 2006, 131(1):272-5.
  • [28]De Minicis S, Seki E, Paik YH, Osterreicher CH, Kodama Y, Kluwe J, et al.: Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis. Hepatology 2010, 52(4):1420-30.
  • [29]Aram G, Potter JJ, Liu X, Wang L, Torbenson MS, Mezey E: Deficiency of nicotinamide adenine dinucleotide phosphate, reduced form oxidase enhances hepatocellular injury but attenuates fibrosis after chronic carbon tetrachloride administration. Hepatology 2009, 49(3):911-9.
  • [30]Bataller R, Schwabe RF, Choi YH, Yang L, Paik YH, Lindquist J, et al.: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 2003, 112(9):1383-94.
  • [31]Tobar N, Villar V, Santibanez JF: ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 2010, 340(1–2):195-202.
  • [32]Mantawy EM, Tadros MG, Awad AS, Hassan DA, El-Demerdash E: Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicol Appl Pharmacol 2012, 258(1):134-44.
  • [33]Abe Y, Izumi T, Urabe A, Nagai M, Taniguchi I, Ikewaki K, et al.: Pravastatin prevents myocardium from ischemia-induced fibrosis by protecting vascular endothelial cells exposed to oxidative stress. Cardiovasc Drugs Ther 2006, 20(4):273-80.
  • [34]Gianella A, Nobili E, Abbate M, Zoja C, Gelosa P, Mussoni L, et al.: Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats. Am J Pathol 2007, 170(4):1165-77.
  • [35]Ikeuchi H, Kuroiwa T, Yamashita S, Hiramatsu N, Maeshima A, Kaneko Y, et al.: Fluvastatin reduces renal fibroblast proliferation and production of type III collagen: therapeutic implications for tubulointerstitial fibrosis. Nephron Exp Nephrol 2004, 97(4):e115-22.
  • [36]Mukai Y, Wang CY, Rikitake Y, Liao JK: Phosphatidylinositol 3-kinase/protein kinase Akt negatively regulates plasminogen activator inhibitor type 1 expression in vascular endothelial cells. Am J Physiol Heart Circ Physiol 2007, 292(4):H1937-42.
  • [37]Wang W, Zhao C, Zhou J, Zhen Z, Wang Y, Shen C: Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitis-related liver fibrosis. PLoS One 2013, 8(10):e76538.
  • [38]Miyaki T, Nojiri S, Shinkai N, Kusakabe A, Matsuura K, Iio E, et al.: Pitavastatin inhibits hepatic steatosis and fibrosis in non-alcoholic steatohepatitis model rats. Hepatol Res 2011, 41(4):375-385.
  文献评价指标  
  下载次数:94次 浏览次数:21次