期刊论文详细信息
BMC Genetics
Epigenetic modifications of caveolae associated proteins in health and disease
Helen D. Nicholson1  Jin-Yih Low1 
[1] Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
关键词: Trichostatin-A;    5-AZA;    Caveolin-2;    Caveolin-1;    PTRF;    Histone acetylation;    Promoter methylation;    micro-RNA;    Epigenetic;    Caveolae;   
Others  :  1216007
DOI  :  10.1186/s12863-015-0231-y
 received in 2015-03-04, accepted in 2015-06-15,  发布年份 2015
PDF
【 摘 要 】

Caveolae are small, “omega-shaped” invaginations at the plasma membrane of the cell which are involved in a variety of processes including cholesterol transport, potocytosis and cell signalling. Within caveolae there are caveolae-associated proteins, and changes in expression of these molecules have been described to play a role in the pathophysiology of various diseases including cancer and cardiovascular disease. Evidence is beginning to accumulate that epigenetic processes may regulate the expression of these caveolae related genes, and hence contribute to disease progression. Here, we summarize the current knowledge of the role of epigenetic modification in regulating the expression of these caveolae related genes and how this relates to changes in cellular physiology and in health and disease.

【 授权许可】

   
2015 Low and Nicholson.

【 预 览 】
附件列表
Files Size Format View
20150628010332770.pdf 786KB PDF download
Fig. 3. 28KB Image download
Fig. 2. 20KB Image download
Fig. 1. 17KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955; 1(5):445-58.
  • [2]Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007; 8(3):185-94.
  • [3]Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013; 14(2):98-112.
  • [4]Glenney JR. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Lett. 1992; 314(1):45-8.
  • [5]Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A. 1996; 93(1):131-5.
  • [6]Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS et al.. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem. 1996; 271(4):2255-61.
  • [7]Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ et al.. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell. 2008; 132(1):113-24.
  • [8]Mineo C, Ying YS, Chapline C, Jaken S, Anderson RG. Targeting of protein kinase Calpha to caveolae. J Cell Biol. 1998; 141(3):601-10.
  • [9]McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ et al.. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 2009; 28(8):1001-15.
  • [10]Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP et al.. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol. 2009; 185(7):1259-73.
  • [11]Glenney JR, Zokas L. Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol. 1989; 108(6):2401-8.
  • [12]Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell. 1992; 68(4):673-82.
  • [13]Le Lay S, Kurzchalia TV. Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim Biophys Acta. 2005; 1746(3):322-33.
  • [14]Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B et al.. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001; 293(5539):2449-52.
  • [15]Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci U S A. 1995; 92(19):8655-9.
  • [16]Cao G, Yang G, Timme TL, Saika T, Truong LD, Satoh T et al.. Disruption of the caveolin-1 gene impairs renal calcium reabsorption and leads to hypercalciuria and urolithiasis. Am J Pathol. 2003; 162(4):1241-8.
  • [17]Cohen AW, Razani B, Wang XB, Combs TP, Williams TM, Scherer PE et al.. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol. 2003; 285(1):C222-35.
  • [18]Hassan GS, Jasmin JF, Schubert W, Frank PG, Lisanti MP. Caveolin-1 deficiency stimulates neointima formation during vascular injury. Biochemistry. 2004; 43(26):8312-21.
  • [19]Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004; 84(4):1341-79.
  • [20]Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman JA, Das K et al.. Mutational analysis of caveolin-induced vesicle formation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 1998; 434(1–2):127-34.
  • [21]Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL et al.. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol. 2002; 22(7):2329-44.
  • [22]Das K, Lewis RY, Scherer PE, Lisanti MP. The membrane-spanning domains of caveolins-1 and −2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J Biol Chem. 1999; 274(26):18721-8.
  • [23]Rybin VO, Grabham PW, Elouardighi H, Steinberg SF. Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol. 2003; 285(1):H325-32.
  • [24]Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M et al.. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996; 271(25):15160-5.
  • [25]Capozza F, Cohen AW, Cheung MW, Sotgia F, Schubert W, Battista M et al.. Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs. muscle cells. Am J Physiol Cell Physiol. 2005; 288(3):C677-91.
  • [26]Capozza F, Combs TP, Cohen AW, Cho YR, Park SY, Schubert W et al.. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol. 2005; 288(6):C1317-31.
  • [27]Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M et al.. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem. 2001; 276(24):21425-33.
  • [28]Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG, Chandra M et al.. Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol. 2002; 160(6):2207-17.
  • [29]Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 1998; 17(10):2855-64.
  • [30]Jansa P, Grummt I. Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse. Mol Gen Genet. 1999; 262(3):508-14.
  • [31]Wanaski SP, Ng BK, Glaser M. Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Biochemistry. 2003; 42(1):42-56.
  • [32]Rajab A, Straub V, McCann LJ, Seelow D, Varon R, Barresi R et al.. Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet. 2010; 6(3):e1000874.
  • [33]Gould ML, Williams G, Nicholson HD. Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate. 2010; 70(15):1609-21.
  • [34]Liu L, Brown D, McKee M, Lebrasseur NK, Yang D, Albrecht KH et al.. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 2008; 8(4):310-7.
  • [35]Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem. 2008; 283(7):4314-22.
  • [36]Govender P, Romero F, Shah D, Paez J, Ding SY, Liu L et al.. Cavin1; a regulator of lung function and macrophage phenotype. PLoS One. 2013; 8(4):e62045.
  • [37]Sward K, Sadegh MK, Mori M, Erjefalt JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep. 2013; 1(1):e00008.
  • [38]Sward K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS One. 2014; 9(3):e92428.
  • [39]Low JY, Nicholson HD. Emerging role of polymerase-1 and transcript release factor (PTRF/ Cavin-1) in health and disease. Cell Tissue Res. 2014; 357(3):505-13.
  • [40]Hansen CG, Bright NA, Howard G, Nichols BJ. SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol. 2009; 11(7):807-14.
  • [41]Briand N, Dugail I, Le Lay S. Cavin proteins: New players in the caveolae field. Biochimie. 2011; 93(1):71-7.
  • [42]Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N, Isodono K et al.. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am J Physiol Cell Physiol. 2008; 295(2):C490-8.
  • [43]Bai L, Deng X, Li Q, Wang M, An W, Deli A et al.. Down-regulation of the cavin family proteins in breast cancer. J Cell Biochem. 2012; 113(1):322-8.
  • [44]Michel V, Bakovic M. Lipid rafts in health and disease. Biol Cell. 2007; 99(3):129-40.
  • [45]Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol. 2002; 3(12):755-63.
  • [46]De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol. 2010; 20(10):609-17.
  • [47]Gowher H, Jeltsch A. Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther. 2004; 3(11):1062-8.
  • [48]Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008; 123(1):8-13.
  • [49]Bui C, Ouzzine M, Talhaoui I, Sharp S, Prydz K, Coughtrie MW et al.. Epigenetics: methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J. 2010; 24(2):436-50.
  • [50]Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al.. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009; 41(2):178-86.
  • [51]Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al.. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009; 41(12):1350-3.
  • [52]Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964; 51:786-94.
  • [53]Ng HH, Bird A. Histone deacetylases: silencers for hire. Trends Biochem Sci. 2000; 25(3):121-6.
  • [54]Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays. 1995; 17(5):423-30.
  • [55]Engelman JA, Zhang XL, Lisanti MP. Sequence and detailed organization of the human caveolin-1 and −2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett. 1999; 448(2–3):221-30.
  • [56]Syeed N, Hussain F, Husain SA, Siddiqi MA. 5′-CpG island promoter hypermethylation of the CAV-1 gene in breast cancer patients of Kashmir. Asian Pac J Cancer Prev. 2012; 13(1):371-5.
  • [57]Chen ST, Lin SY, Yeh KT, Kuo SJ, Chan WL, Chu YP et al.. Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med. 2004; 14(4):577-82.
  • [58]Alevizos L, Kataki A, Derventzi A, Gomatos I, Loutraris C, Gloustianou G et al.. Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4. Clin Exp Metastasis. 2014; 31(5):511-20.
  • [59]Deb M, Sengupta D, Kar S, Rath SK, Parbin S, Shilpi A et al.. Elucidation of caveolin 1 both as a tumor suppressor and metastasis promoter in light of epigenetic modulators. Tumour Biol. 2014; 35(12):12031-47.
  • [60]Van den Eynden GG, Van Laere SJ, Van der Auwera I, Merajver SD, Van Marck EA, van Dam P et al.. Overexpression of caveolin-1 and −2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat. 2006; 95(3):219-28.
  • [61]Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P et al.. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2013; 32(38):4519-28.
  • [62]Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate. 2001; 46(3):249-56.
  • [63]Yang B, Bhusari S, Kueck J, Weeratunga P, Wagner J, Leverson G et al.. Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer. Neoplasia. 2013; 15(4):399-408.
  • [64]Bachmann N, Haeusler J, Luedeke M, Kuefer R, Perner S, Assum G et al.. Expression changes of CAV1 and EZH2, located on 7q31 approximately q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genet Cytogenet. 2008; 182(2):103-10.
  • [65]Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 2008; 27(4):715-35.
  • [66]Dennis JW, Pawling J, Cheung P, Partridge E, Demetriou M. UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,6 N-acetylglucosaminyltransferase V (Mgat5) deficient mice. Biochim Biophys Acta. 2002; 1573(3):414-22.
  • [67]Takenaka Y, Fukumori T, Raz A. Galectin-3 and metastasis. Glycoconj J. 2004; 19(7–9):543-9.
  • [68]Kunze E, Von Bonin F, Werner C, Wendt M, Schlott T. Transitional cell carcinomas and nonurothelial carcinomas of the urinary bladder differ in the promoter methylation status of the caveolin-1, hDAB2IP and p53 genes, but not in the global methylation of Alu elements. Int J Mol Med. 2006; 17(1):3-13.
  • [69]Kunze E, Schlott T. High frequency of promoter methylation of the 14-3-3 sigma and CAGE-1 genes, but lack of hypermethylation of the caveolin-1 gene, in primary adenocarcinomas and signet ring cell carcinomas of the urinary bladder. Int J Mol Med. 2007; 20(4):557-63.
  • [70]Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD et al.. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res. 2004; 64(12):4277-85.
  • [71]Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K et al.. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol. 2001; 159(5):1635-43.
  • [72]Lin SY, Yeh KT, Chen WT, Chen HC, Chen ST, Chang JG. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res. 2004; 24(3a):1645-50.
  • [73]Mori Y, Cai K, Cheng Y, Wang S, Paun B, Hamilton JP et al.. A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology. 2006; 131(3):797-808.
  • [74]Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J et al.. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res. 2012; 72(16):4097-109.
  • [75]Hirasawa Y, Arai M, Imazeki F, Tada M, Mikata R, Fukai K et al.. Methylation status of genes upregulated by demethylating agent 5-aza-2′-deoxycytidine in hepatocellular carcinoma. Oncology. 2006; 71(1–2):77-85.
  • [76]Dewantoro O, Gani RA, Akbar N. Hepatocarcinogenesis in viral Hepatitis B infection: the role of HBx and p53. Acta Med Indones. 2006; 38(3):154-9.
  • [77]Yan J, Lu Q, Dong J, Li X, Ma K, Cai L. Hepatitis B virus X protein suppresses caveolin-1 expression in hepatocellular carcinoma by regulating DNA methylation. BMC Cancer. 2012; 12:353.
  • [78]McEwen BS. Invited review: Estrogens effects on the brain: multiple sites and molecular mechanisms. J Appl Physiol (1985). 2001; 91(6):2785-801.
  • [79]Behl C. Oestrogen as a neuroprotective hormone. Nat Rev Neurosci. 2002; 3(6):433-42.
  • [80]Zschocke J, Manthey D, Bayatti N, van der Burg B, Goodenough S, Behl C. Estrogen receptor alpha-mediated silencing of caveolin gene expression in neuronal cells. J Biol Chem. 2002; 277(41):38772-80.
  • [81]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al.. Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5):495-500.
  • [82]Farazi TA, Juranek SA, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development. 2008; 135(7):1201-14.
  • [83]Bostjancic E, Jerse M, Glavac D, Zidar N. miR-1, miR-133a/b, and miR-208a in human fetal hearts correlate to the apoptotic and proliferation markers. Exp Biol Med (Maywood). 2014; 240(2):211-9.
  • [84]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al.. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006; 38(2):228-33.
  • [85]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al.. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65(16):7065-70.
  • [86]Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Fujimura L, Yoshino H et al.. Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. Int J Oncol. 2011; 38(1):209-17.
  • [87]Lin DH, Yue P, Pan C, Sun P, Wang WH. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol. 2011; 22(6):1087-98.
  • [88]Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al.. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011; 474(7353):649-53.
  • [89]Nystrom FH, Chen H, Cong LN, Li Y, Quon MJ. Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol. 1999; 13(12):2013-24.
  • [90]Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S et al.. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013; 9(2):e1003291.
  • [91]Shi XE, Li YF, Jia L, Ji HL, Song ZY, Cheng J et al.. MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation. Int J Mol Sci. 2014; 15(5):8526-38.
  • [92]Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG et al.. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem. 2002; 277(10):8635-47.
  • [93]Yang S, Liu X, Li X, Sun S, Sun F, Fan B et al.. MicroRNA-124 reduces caveolar density by targeting caveolin-1 in porcine kidney epithelial PK15 cells. Mol Cell Biochem. 2013; 384(1–2):213-9.
  • [94]Gil-Zamorano J, Martin R, Daimiel L, Richardson K, Giordano E, Nicod N et al.. Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism. J Nutr. 2014; 144(5):575-85.
  • [95]Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci. 2011; 124(Pt 16):2826-36.
  • [96]Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y et al.. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013; 190(3):1059-68.
  • [97]Hoeke L, Sharbati J, Pawar K, Keller A, Einspanier R, Sharbati S. Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One. 2013; 8(6):e67300.
  • [98]Inder KL, Ruelcke JE, Petelin L, Moon H, Choi E, Rae J, et al. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles. 2014;3
  • [99]Pogribny IP. Epigenetic events in tumorigenesis: putting the pieces together. Exp Oncol. 2010; 32(3):132-6.
  • [100]Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S et al.. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009; 119(9):2623-33.
  • [101]Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M et al.. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008; 93(4):1129-34.
  • [102]Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004; 4(12):988-93.
  • [103]Tost J. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010; 44(1):71-81.
  • [104]Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol. 2005; 35(6):293-301.
  • [105]Nilsen TW. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet. 2007; 23(5):243-9.
  文献评价指标  
  下载次数:41次 浏览次数:22次