| BMC Cancer | |
| The expression of Dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer | |
| Kelly A Avery-Kiejda1  Stephen G Braye3  John F Forbes2  Rodney J Scott3  | |
| [1] School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia | |
| [2] School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia | |
| [3] Hunter Area Pathology Service, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia | |
| 关键词: Triple negative; Metastasis; Breast cancer; Drosha; Dicer; | |
| Others : 858904 DOI : 10.1186/1471-2407-14-253 |
|
| received in 2013-08-05, accepted in 2014-04-09, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Breast cancer is the most common malignancy in women world-wide. Triple negative breast cancer (TNBC) is a highly aggressive subtype that lacks expression of hormone receptors for estrogen, progesterone and human epidermal growth factor 2; and is associated with a high propensity for metastatic spread. Several studies have identified critical roles for microRNAs in breast cancer, but the role of two critical enzymes involved in microRNA biogenesis, Dicer and Drosha, is not well understood, particularly with respect to metastatic progression in this subtype.
Methods
We examined the expression of Dicer and Drosha in a series of invasive 35 TNBCs with matched normal adjacent tissues (n = 18) and lymph node metastases (n = 15) using semi-quantitative real time RT-PCR. The relationship of their expression with clinical features including age at diagnosis, lymph node positivity and tumour size was analysed.
Results
We report that Dicer was significantly decreased while Drosha was significantly increased in tumours when compared to normal adjacent tissues. While there was no difference in Drosha expression in lymph node metastases when compared to the primary tumour, Dicer was significantly increased. There was no correlation between the expression of either Dicer or Drosha to age at diagnosis, lymph node positivity and tumour size.
Conclusions
In conclusion, Dicer and Drosha are dysregulated in TNBC and matched lymph node metastases however, the clinical relevance of this is still not known. The altered expression of Dicer and Drosha may serve as markers for disrupted miRNA biogenesis in TNBC.
【 授权许可】
2014 Avery-Kiejda et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140724054043213.pdf | 780KB | ||
| 73KB | Image | ||
| 130KB | Image |
【 图 表 】
【 参考文献 】
- [1]Kamangar F, Dores GM, Anderson WF: Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006, 24(14):2137-2150.
- [2]Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HW, Luts J, Monleon D, Postma GJ, Schneiderhan-Marra N, Santoro F, Wouters H, Russnes HG, Sorlie T, Tagliabue E, Borresen-Dale AL: Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 2010, 4(3):209-229.
- [3]Carey L, Winer E, Viale G, Cameron D, Gianni L: Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 2010, 7(12):683-692.
- [4]Jackson RJ, Standart N: How do microRNAs regulate gene expression? Sci STKE 2007, 2007:367. re1
- [5]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65(16):7065-7070.
- [6]Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, Klijn JG, Wiemer EA, Martens JW: Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S A 2008, 105(35):13021-13026.
- [7]Le Quesne JL, Jones J, Warren J, Dawson SJ, Ali R, Bardwell H, Blows F, Pharoah P, Caldas C: Biological and prognostic associations of miR-205 and let-7b in breast cancer revealed by in situ hybridisation analysis of micro-RNA expression in arrays of archival tumour tissue. J Pathol 2012, 227(3):306-314.
- [8]Rothe F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H, Desmedt C, Harris AL, Piccart M, Sotiriou C: Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 2011, 6(6):e20980.
- [9]Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci U S A 2012, 109(8):3024-3029.
- [10]Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008, 14(11):2348-2360.
- [11]Yates LA, Norbury CJ, Gilbert RJ: The Long and Short of MicroRNA. Cell 2013, 153(3):516-519.
- [12]Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW, Dhir R: Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 2006, 169(5):1812-1820.
- [13]Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW, Dacic S: Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 2007, 67(5):2345-2350.
- [14]Faber C, Horst D, Hlubek F, Kirchner T: Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer 2011, 47(9):1414-1419.
- [15]Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K, Yatabe Y, Takamizawa J, Miyoshi S, Mitsudomi T, Takahashi T: Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005, 96(2):111-115.
- [16]Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK: Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008, 359(25):2641-2650.
- [17]Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H, Ando T, Mori R, Takashima N, Ogawa R, Fujii Y: RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 2006, 12(24):7322-7328.
- [18]Khoshnaw SM, Rakha EA, Abdel-Fatah T, Nolan CC, Hodi Z, Macmillan RD, Ellis IO, Green AR: The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients. Breast Cancer Res Treat 2013, 137(1):139-153.
- [19]Khoshnaw SM, Rakha EA, Abdel-Fatah TM, Nolan CC, Hodi Z, Macmillan DR, Ellis IO, Green AR: Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat 2012, 135(2):403-413.
- [20]Yan M, Huang HY, Wang T, Wan Y, Cui SD, Liu ZZ, Fan QX: Dysregulated expression of dicer and drosha in breast cancer. Pathol Oncol Res 2012, 18(2):343-348.
- [21]Dedes KJ, Natrajan R, Lambros MB, Geyer FC, Lopez-Garcia MA, Savage K, Jones RL, Reis-Filho JS: Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 2011, 47(1):138-150.
- [22]Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I, Leon-Goddard S, Rimokh R, Mikaelian I, Venoux C, Puisieux A, Lasset C, Moyret-Lalle C: Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 2009, 101(4):673-683.
- [23]Passon N, Gerometta A, Puppin C, Lavarone E, Puglisi F, Tell G, Di Loreto C, Damante G: Expression of Dicer and Drosha in triple-negative breast cancer. J Clin Pathol 2012, 65(4):320-326.
- [24]Avery-Kiejda KA, Braye SG, Mathe A, Forbes JF, Scott RJ: Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer 2014, 14(1):51. BioMed Central Full Text
- [25]Avery-Kiejda KA, Bowden NA, Croft AJ, Scurr LL, Kairupan CF, Ashton KA, Talseth-Palmer BA, Rizos H, Zhang XD, Scott RJ, Hersey P: P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 2011, 11(1):203. BioMed Central Full Text
PDF