期刊论文详细信息
BMC Structural Biology
Crystal structure of putative CbiT from Methanocaldococcus jannaschii: an intermediate enzyme activity in cobalamin (vitamin B12) biosynthesis
Yoshitaka Bessho1  Shigeyuki Yokoyama2  Balasundaram Padmanabhan3 
[1] RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan;Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan;RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
关键词: Methanocaldococcus jannaschii;    MJ0391;    AdoHcy cofactor;    Crystal structure;    CbiT;    Decarboxylase;    Precorrin 7 C15-methyltransferase;    Vitamin B12;    Cobalamin biosynthesis;   
Others  :  1091279
DOI  :  10.1186/1472-6807-13-10
 received in 2013-02-02, accepted in 2013-05-10,  发布年份 2013
PDF
【 摘 要 】

Background

In the anaerobic pathway of cobalamin (vitamin B12) synthesis, the CbiT enzyme plays two roles, as a cobalt-precorrin-7 C15-methyltransferase and a C12-decarboxylase, to produce the intermediate, cobalt-precorrin 8.

Results

The primary structure of the hypothetical protein MJ0391, from Methanocaldococcus jannaschii, suggested that MJ0391 is a putative CbiT. Here, we report the crystal structure of MJ0391, solved by the MAD procedure and refined to final R-factor and R-free values of 19.8 & 27.3%, respectively, at 2.3 Å resolution. The asymmetric unit contains two NCS molecules, and the intact tetramer generated by crystallographic symmetry may be functionally important. The overall tertiary structure and the tetrameric arrangements are highly homologous to those found in MT0146/CbiT from Methanobacterium thermoautotrophicum.

Conclusions

The conservation of functional residues in the binding site for the co-factor, AdoMet, and in the putative precorrin-7 binding pocket suggested that MJ0391 may also possess CbiT activity. The putative function of MJ0391 is discussed, based on structural homology.

【 授权许可】

   
2013 Padmanabhan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170750630.pdf 2399KB PDF download
Figure 4. 128KB Image download
Figure 3. 177KB Image download
Figure 2. 245KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC: The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 2002, 19:390-412.
  • [2]Scott AI: Discovering nature’s diverse pathways to vitamin B12: a 35-year odyssey. J Org Chem 2003, 68:2529-2539.
  • [3]Roth JR, Lawrence JG, Bobik TA: Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 1996, 50:137-181.
  • [4]Blanche F, Thibaut D, Debussche L, Hertle R, Zipfel F, Müller G: Parallels and decisive differences in vitamin B12 biosynthesis. Angew Chem Int Ed Engl 1993, 32:1651-1653.
  • [5]Battersby AR: How nature builds the pigments of life: the conquest of vitamin B12. Science 1994, 264:1551-1557.
  • [6]Blanche F, Cameron B, Crouzet J, Debussche L, Thibaut D, Vulhorgne M, Leeper FJ, Battersby AR: Vitamin B12: How the problem of its biosynthesis was solved. Angew Chem Int Ed Engl 1995, 34:383-411.
  • [7]Vévodová J, Graham RM, Raux E, Schubert HL, Roper DI, Brindley AA, Scott AI, Rossener CA, Stamford NP, Stroupe ME, et al.: Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. J Mol Biol 2004, 344:419-433.
  • [8]Heldt D, Lawrence AD, Lindenmeyer M, Deery E, Heathcote P, Rigby SE, Warren MJ: Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation. Biochem Soc Trans 2005, 33:815-819.
  • [9]Leech HK, Raux E, McLean KJ, Munro AW, Robinson NJ, Borrelly GP, Malten M, Jahn D, Rigby SE, Heathcote P, et al.: Characterization of the cobaltochelatase CbiXL: evidence for a 4Fe-4S center housed within an MXCXXC motif. J Biol Chem 2003, 278:41900-41907.
  • [10]Roessner CA, Scott AI: Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacter 2006, 188:7331-7334.
  • [11]Scott AI, Roessner CA: Recent discoveries in the pathways to cobalamin (coenzyme B12) achieved through chemistry and biology. Pure Appl Chem 2007, 79:2179-2188.
  • [12]Raux E, Lanois A, Warren MJ, Rambach A, Thermes C: Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 1998, 335:159-166.
  • [13]Roessner CA, Huang K, Warren MJ, Raux E, Scott AI: Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 2002, 148:1845-1853.
  • [14]Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al.: Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996, 273:1058-1073.
  • [15]Roessner CA, Williams HJ, Scott AI: Genetically engineered production of 1-desmethylcobyrinic acid, 1-desmethylcobyrinic acid a, c-diamide, and cobyrinic acid a, c-diamide in Escherichia coli implies a role for CbiD in C-1 methylation in the anaerobic pathway to cobalamin. J Biol Chem 2005, 280:16748-16753.
  • [16]Santander PJ, Kajiwara Y, Williams HJ, Scott AI: Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg Med Chem 2005, 14:724-731.
  • [17]Kajiwara Y, Santander PJ, Rossener CA, Pérez LM, Scott AI: Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and -5B, two new intermediates on the anaerobic pathway to vitamin B12: definition of the roles of the CbiF and CbiG enzymes. J Am Chem Soc 2006, 128:9971-9978.
  • [18]Xue Y, Wei Z, Li X, Gong W: The crystal structure of putative precorrin isomerase CbiC in cobalamin biosynthesis. J Struct Biol 2006, 153:307-311.
  • [19]Schubert HL, Wilson KS, Raux E, Woodcock SC, Warren MJ: The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. Nat Struct Biol 1998, 5:585-592.
  • [20]Schubert HL, Raux E, Wilson KS, Warren MJ: Common chelatase design in the branched tetrapyrrole pathways of heme and anaerobic cobalamin synthesis. Biochemistry 1999, 38:10660-10669.
  • [21]Frank S, Deery E, Brindley AA, Leech HK, Lawrence A, Heathcote P, Schubert HL, Brocklehurst K, Rigby SE, Warren MJ, Pickersgill RW: Elucidation of substrate specificity in the cobalamin (vitamin B12) biosynthetic methyltransferases. Structure and function of the C20 methyltransferase (CbiL) from Methanothermobacter thermautotrophicus. J Biol Chem 2007, 282:23957-23969.
  • [22]Keller JP, Smith PM, Benach J, Christendat D, de Titta GT, Hunt JF: The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase. Structure 2002, 10:1475-1487.
  • [23]Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics 2000, 16:566-567.
  • [24]Deery E, Schroeder S, Lawrence AD, Taylor SL, Seyedarabi A, Waterman J, Wilson KS, Brown D, Geeves MA, Howard MJ, Pickersgill RW, Warren MJ: An enzyme-trap approach allows isolation of intermediates in cobalamin biosynthesis. Nat Chem Biol 2012, 8:933-940.
  • [25]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [26]Gouet P, Courcelle E, Stuart DI, Métoz F: ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15:305-308.
  • [27]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001, 98:10037-10041.
  • [28]Otwinowski Z, Minor W: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997, 276:307-326.
  • [29]Terwilliger TC, Berendzen J: Automated MAD and MIR structure solution. Acta Crystallogr 1999, D55:849-861.
  • [30]Terwilliger TC: Maximum-likelihood density modification. Acta Crystallogr 2000, D56:965-972.
  • [31]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr 2004, D60:2126-2132.
  • [32]Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL: Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr 1998, D54:905-921.
  • [33]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr 1997, D53:240-255.
  • [34]Collaborative Computational Project, Number 4: The CCP4 suite: Programs for protein crystallography. Acta Crystallogr 1994, D50:760-763.
  • [35]Lovell SC, Davis IW, Arendall WB III, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC: Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 2003, 50:437-450.
  • [36]Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr 2010, D66:12-21.
  文献评价指标  
  下载次数:36次 浏览次数:20次