BMC Microbiology | |
CsrA impacts survival of Yersinia enterocolitica by affecting a myriad of physiological activities | |
Glenn M Young1  Jing-Yu Chen3  Gulustan Ozturk1  Kang K Liu1  Yan Zheng2  Shane Petersen1  Karen LeGrand1  | |
[1] Department of Food Science and Technology, University of California, Davis, Davis, CA, USA;College of Food Science, Shenyang Agricultural University, Shenyang, PR China;College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China | |
关键词: Mutant selection; Psychrotroph; Temperature sensitivity; Antibiotic sensitivity; Salt sensitivity; Motility; Csr system; CsrA; Yersinia; | |
Others : 1137431 DOI : 10.1186/s12866-015-0343-6 |
|
received in 2014-10-01, accepted in 2015-01-13, 发布年份 2015 | |
【 摘 要 】
Background
A previous study identified a Yersinia enterocolitica transposon mutant, GY448, that was unable to export the flagellar type three secretion system (T3SS)-dependent phospholipase, YplA. This strain was also deficient for motility and unable to form colonies on Lauria-Bertani agar medium. Preliminary analysis suggested it carried a mutation in csrA. CsrA in Escherichia coli is an RNA-binding protein that is involved in specific post-transcriptional regulation of a myriad of physiological activities. This study investigated how CsrA affects expression of the flagellar regulatory cascade that controls YplA export and motility. It also explored the effect of csrA mutation on Y. enterocolitica in response to conditions that cue physiological changes important for growth in environments found both in nature and the laboratory.
Results
The precise location of the transposon insertion in GMY448 was mapped within csrA. Genetic complementation restored disruptions in motility and the YplA export phenotype (Yex), which confirmed this mutation disrupted CsrA function. Mutation of csrA affected expression of yplA and flagellar genes involved in flagellar T3SS dependent export and motility by altering expression of the master regulators flhDC. Mutation of csrA also resulted in increased sensitivity of Y. enterocolitica to various osmolytes, temperatures and antibiotics.
Conclusions
The results of this study reveal unique aspects of how CsrA functions in Y. enterocolitica to control its physiology. This provides perspective on how the Csr system is susceptible to adaptation to particular environments and bacterial lifestyles.
【 授权许可】
2015 LeGrand et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150317050043954.pdf | 820KB | download | |
Figure 6. | 26KB | Image | download |
Figure 5. | 39KB | Image | download |
Figure 4. | 54KB | Image | download |
Figure 3. | 13KB | Image | download |
Figure 2. | 30KB | Image | download |
Figure 1. | 22KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Young BM, Young GM: YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol 2002, 184:1324-34.
- [2]Schmiel DH, Young GM, Miller VL: The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 2000, 182:2314-20.
- [3]Petersen S, Young GM: Essential role for cyclic AMP and its receptor protein in Yersinia enterocolitica virulence. Infect Immun 2002, 70:3665-72.
- [4]Young GM, Schmiel DH, Miller VL: A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci 1999, 96:6456-61.
- [5]Romeo T, Vakulskas CA, Babitzke P: Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 2012, 15:313-24.
- [6]Romeo T: Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 1998, 29:1321-30.
- [7]Liu MY, Gui G, Wei B, Preston JF, Oakford L, Yüksel Ü, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272:17502–10.
- [8]Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, et al. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol. 2003;48:657–70.
- [9]Suzuki K, Babitzke P, Kushner SR, Romeo T: Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 2006, 20:2605-17.
- [10]Mercante J, Suzuki K, Cheng X, Babitzke P, Romeo T: Comprehensive Alanine-scanning Mutagenesis of Escherichia coli CsrA Defines Two Subdomains of Critical Functional Importance. J Biol Chem 2006, 281:31832-42.
- [11]Gutiérrez P, Li Y, Osborne MJ, Pomerantseva E, Liu Q, Gehring K. Solution structure of the carbon storage regulator protein CsrA from Escherichia coli. J Bacteriol. 2005;187:3496–501.
- [12]Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, et al. Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol. 2006;355:1026–36.
- [13]Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA: Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Mol Microbiol 1996, 19:1061-71.
- [14]Iriarte M, Stainier I, Mikulskis AV, Cornelis GR: The fliA gene encoding sigma 28 in Yersinia enterocolitica. J Bacteriol 1995, 177:2299-304.
- [15]Bartlett DH, Frantz BB, Matsumura P. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988;170:1575–81.
- [16]Liu X, Matsumura P: The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 1994, 176:7345-51.
- [17]Young GM, Smith MJ, Minnich SA, Miller VL: The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. J Bacteriol 1999, 181:2823-33.
- [18]Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C: Global regulation by CsrA in Salmonella Typhimurium. Mol Microbiol 2003, 48:1633-45.
- [19]Wei BL, Brun-Zinkernagel AM, Simecka JW, Prüß BM, Babitzke P, Romeo T: Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 2001, 40:245-56.
- [20]Heroven AK, Böhme K, Rohde M, Dersch P: A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 2008, 68:1179-95.
- [21]Jonas K, Edwards AN, Ahmad I, Romeo T, Römling U, Melefors Ö: Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol 2010, 12:524-40.
- [22]Yakhnin AV, Baker CS, Vakulskas CA, Yakhnin H, Berezin I, Romeo T, et al. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol. 2013;87:851–66.
- [23]Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, et al. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol. 2011;80:1637–56.
- [24]Heroven AK, Dersch P: RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 2006, 62:1469-83.
- [25]Chatterjee A, Cui Y, Chakrabarty P, Chatterjee AK: Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol Plant Microbe Interact 2010, 23:1316-23.
- [26]Barnard FM, Loughlin MF, Fainberg HP, Messenger MP, Ussery DW, Williams P, et al. Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen Helicobacter pylori. Mol Microbiol. 2004;51:15–32.
- [27]Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors Ö, Georgellis D, et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J Bacteriol. 2002;184:5130–40.
- [28]Romeo T (Ed). Bacterial biofilms. In: Current topics in microbiology and immunology. 2008, 322. 1-293.
- [29]Babitzke P, Romeo T: CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007, 10:156-63.
- [30]Mondragón V, Franco B, Jonas K, Suzuki K, Romeo T, Melefors Ö, et al. pH-dependent activation of the BarA-UvrY two-component system in Escherichia coli. J Bacteriol. 2006;188:8303–6.
- [31]Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM: Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 1993, 175:4744-55.
- [32]Timmermans J, Van Melderen L: Conditional essentiality of the csrA Gene in Escherichia coli. J Bacteriol 2009, 191:1722-4.
- [33]Altier C, Suyemoto M, Lawhon SD: Regulation of Salmonella enterica Serovar Typhimurium invasion genes by csrA. Infect Immun 2000, 68:6790-7.
- [34]Pessi G, Williams F, Hindle Z, Heurlier K, Holden MTG, Cámara M, et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-Acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol. 2001;183:6676–83.
- [35]Stanisich VA, Holloway BW: A mutant sex factor of Pseudomonas aeruginosa. Genet Res 1972, 19:91-108.
- [36]Jay JM, Loessner MJ, Golden DA: Protection of foods with low-temperatures, and characteristics of psychrotrophic microorganisms. In Modern food microbiology, food science text series. 7th edition. Springer, New York; 2005:395-413.
- [37]Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T: The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 2000, 23:165-73.
- [38]Palonen E, Lindström M, Korkeala H: Adaptation of enteropathogenic Yersinia to low growth temperature. Crit Rev Microbiol 2010, 36:54-67.
- [39]Knudsen GM, Nielsen MB, Thomsen LE, Aabo S, Rychlik I, Olsen JE: The role of ClpP; RpoS and CsrA in growth and filament formation of Salmonellaenterica serovar Typhimurium at low temperature. BMC Microbiol 2014, 14:208. BioMed Central Full Text
- [40]Vakulskas CA, Pannuri A, Cortés-Selva D, Zere TR, Ahmer BM, Babitzke P, et al. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol Microbiol. 2014;92:945–58.
- [41]Ohno A, Kato N, Sakamoto R, Kimura S, Yamaguchi K: Temperature-dependent parasitic relationship between Legionella pneumophila and a free-living amoeba (Acanthamoeba castellanii). Appl Environ Microbiol 2008, 74:4585-8.
- [42]Kinder SA, Badger JL, Bryant GO, Pepe JC, Miller VL: Cloning of the YenI restriction endonuclease and methyltransferase from Yersinia enterocolitica serotype O8 and construction of a transformable R-M+ mutant. Gene 1993, 136:271-5.
- [43]Maniatis T, Fritsch EF, Sambrook J: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1982.
- [44]Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technol 1983, 1:784-91.
- [45]Bäumler AJ, Tsolis RM, Van der Velden AWM, Stojiljkovic I, Anic S, Heffron F: Identification of a new iron regulated locus of Salmonella typhi. Gene 1996, 183:207-13.
- [46]Michiels T, Cornelis GR: Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 1991, 173:1677-85.
- [47]Venecia K, Young GM: Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica Biovar 1B. Infect Immun 2005, 73:5961-77.
- [48]Dennis JJ, Zylstra GJ: Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol 1998, 64:2710-5.
- [49]Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al.: Current protocols in molecular biology. John Wiley & Sons, New York; 2001.
- [50]Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci 1979, 76:1648-52.
- [51]Herrero M, de Lorenzo V, Timmis KN: Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 1990, 172:6557-67.
- [52]Young GM, Miller VL: Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 1997, 25:319-28.
- [53]Givskov M, Olsen L, Molin S: Cloning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J Bacteriol 1988, 170:5855-62.
- [54]Miller JH: Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1972.
- [55]Andrews JM: Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001, 48:5-16.