期刊论文详细信息
BMC Evolutionary Biology
The role of deleterious mutations in the stability of hybridogenetic water frog complexes
Roberto Barbuti2  Paolo Milazzo1  Pasquale Bove1 
[1] Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa, Italy;Museo di Storia Naturale, Università di Pisa, Via Roma, 79, 56011 Calci (Pisa), Italy
关键词: Simulations;    Computational models;    Sexual selection;    Water frogs;    Hybridogenesis;   
Others  :  856553
DOI  :  10.1186/1471-2148-14-107
 received in 2014-02-28, accepted in 2014-05-09,  发布年份 2014
PDF
【 摘 要 】

Background

Some species of water frogs originated from hybridization between different species. Such hybrid populations have a particular reproduction system called hybridogenesis. In this paper we consider the two species Pelophylax ridibundus and Pelophylax lessonae, and their hybrids Pelophylax esculentus. P. lessonae and P. esculentus form stable complexes (L-E complexes) in which P. esculentus are hemiclonal. In L-E complexes all the transmitted genomes by P. esculentus carry deleterious mutations which are lethal in homozygosity.

Results

We analyze, by means of an individual based computational model, L-E complexes. The results of simulations based on the model show that, by eliminating deleterious mutations, L-E complexes collapse. In addition, simulations show that particular female preferences can contribute to the diffusion of deleterious mutations among all P. esculentus frogs. Finally, simulations show how L-E complexes react to the introduction of translocated P. ridibundus.

Conclusions

The conclusions are the following: (i) deleterious mutations (combined with sexual preferences) strongly contribute to the stability of L-E complexes; (ii) female sexual choice can contribute to the diffusion of deleterious mutations; and (iii) the introduction of P. ridibundus can destabilize L-E complexes.

【 授权许可】

   
2014 Bove et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723032641291.pdf 460KB PDF download
46KB Image download
52KB Image download
48KB Image download
50KB Image download
53KB Image download
45KB Image download
49KB Image download
44KB Image download
50KB Image download
【 图 表 】

【 参考文献 】
  • [1]Uzzell T, Berger L, Günther R: Diploid and triploid progeny from a diploid female of Rana esculenta (Amphibia Salientia). Proc Acad Nat Sci Phila 1975, 127:81-91.
  • [2]Rybacki M, Berger L: Types of water frog populations (Rana esculenta complex) in Poland. Zoosystematics Evol 2001, 77:51-57.
  • [3]Borkin L, Korshunov A, Lada G, Litvinchuk S, Rosanov J, Shabanov D, Zinenko A: Mass occurrence of polyploid green frogs (Rana esculenta complex) in Eastern Ukraine. Russ J Herpetol 2004, 11(3):194-213.
  • [4]Krizmanic̀ I, Ivanovic̀ A: Population systems of the Pelophylax esculentus complex in the southern part of its range. Folia Zoolog 2010, 59(3):215-222.
  • [5]Holsbeek G, Jooris R: Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol Invasions 2010, 12:1-13.
  • [6]Berger L: Systematics and hybridization in European green frogs of Rana esculenta complex. J Herpetol 1973, 7:1-10.
  • [7]Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T: Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J Exp Zool 1985, 236(2):199-210.
  • [8]Spolsky C, Uzzell T: Evolutionary history of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA analyses. Mol Biol Evol 1986, 3:44-56.
  • [9]Vorburger C, Reyer HU: A genetic mechanism of species replacement in European waterfrogs? Conserv Genet 2003, 4(2):141-155.
  • [10]Schmeller D: Tying ecology and genetics of hemiclonally reproducing waterfrogs (Rana, Anura). Annales Zoologici Fennici 2004, 41(5):681-687.
  • [11]Marracci S, Ragghianti M: The hybridogenetic Rana (Pelophylax) esculenta complex studied in a molecular context. Ital J Zool 2008, 75(2):109-112.
  • [12]Lehtonen J, Schmidt DJ, Heubel K, Kokko H: Evolutionary and ecological implications of sexual parasitism. Trends Ecol Evol 2013, 28(5):297-306.
  • [13]Semlitsch RD, Schmiedehausen S, Hotz H, Beerli P: Genetic compatibility between sexual and clonal genomes in local populations of the hybridogenetic Rana esculenta complex. Evol Ecol 1996, 10(5):531-543.
  • [14]Vorburger C: Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution 2001, 55(11):2319-2332.
  • [15]Vorburger C: Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes. Ecol Lett 2001, 4(6):628-636.
  • [16]Guex GD, Hotz H, Semlitsch RD: Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution 2002, 56(5):1036-1044.
  • [17]Luquet E, Vorburger C, Hervant F, Joly P, Kaufmann B, Schmeller D, Léna J, Grolet O, Konecny L, Plénet S: Invasiveness of an introduced species: the role of hybridization and ecological constraints. Biol Invasions 2011, 13(8):1901-1915.
  • [18]Christiansen DG, Fog K, Pedersen BV, Boomsma JJ: Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution 2005, 59(6):1348-1361.
  • [19]Christiansen DG, Reyer HU: From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 2009, 63(7):1754-1768.
  • [20]Arioli M, Jakob C, Reyer HU: Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol Ecol 2010, 19(9):1814-1828.
  • [21]Christiansen DG, Jakob C, Arioli M, Roethlisberger S, Reyer HU: Coexistence of diploid and triploid hybrid water frogs: population differences persist in the apparent absence of differential survival. BMC Ecol 2010, 10:14. BioMed Central Full Text
  • [22]Mezhzherin S, Morozov-Leonov S, Rostovskaya O, Shabanov D, Sobolenko L: The ploidy and genetic structure of hybrid populations of water frogs Pelophylax esculentus complex (Amphibia, Ranidae) of Ukraine fauna. Cytol Genet 2010, 44(4):212-216.
  • [23]Christiansen DG, Reyer HU: Effects of geographic distance, sea barriers and habitat on the genetic structure and diversity of all-hybrid water frog populations. Heredity 2011, 106:1-25.
  • [24]Semlitsch RD, Schmiedehausen S: Parental contributions to variation in hatchling size and its relationship to growth and metamorphosis in tadpoles of Rana lessonae and Rana esculenta. Copeia 1994, 1994(2):406-412.
  • [25]Horat P, Semlitsch RD: Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociob 1994, 34(6):393-401.
  • [26]Plenet S, Hervant F, Joly P: Ecology of the hybridogenetic Rana esculenta complex: differential oxygen requirements of tadpoles. Evol Ecol 2000, 14:13-23.
  • [27]Planade B, Lena J, Li H, Plenet S, Guegan J, Thomas F, Hurtrezbousses S, Renaud F, Joly P: Tracking a heterosis effect in the field: tadpole resistance to parasites in the water frog hybridogenetic complex. Parasitology 2009., 136
  • [28]Neveu A: Suitability of European green frogs for intensive culture: comparison between different phenotypes of the esculenta hybridogenetic complex. Aquaculture 2009, 295(1–2):30-37.
  • [29]Neveu A: Influence of genotype of froglets belonging to the Rana esculenta hybridogenetic complex in relation to learning capacity to eat pellets. Aquaculture 2011, 310(3–4):343-349.
  • [30]Semlitsch RD, Reyer HU: Performance of tadpoles from the hybridogenetic Rana esculenta complex: interactions with pond drying and interspecific competition. Evolution 1992, 46(3):665-676.
  • [31]Semlitsch RD: Effects of different predators on the survival and development of tadpoles from the hybridogenetic Rana esculenta complex. Oikos 1993, 67:40-46.
  • [32]Semlitsch RD: Asymmetric competition in mixed populations of tadpoles of the hybridogenetic Rana esculenta complex. Evolution 1993, 47(2):510-519.
  • [33]Hotz H, Semlitsch RD, Gutmann E, Guex GD, Beerli P: Spontaneous heterosis in larval life-history traits of hemiclonal frog hybrids. Proc Natl Acad Sci 1999, 96(5):2171-2176.
  • [34]Tejedo M, Semlitsch RD, Hotz H: Differential morphology and jumping performance of newly metamorphosed frogs of the hybridogenetic Rana esculenta complex. J Herpetol 2000, 34(2):201-210.
  • [35]Peter AK: Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can J Zool 2001, 79(4):652-661.
  • [36]Anholt BR, Hotz H, Guex GD, Semlitsch RD: Overwinter survival of Rana lessonae and its hemiclonal associate Rana esculenta. Ecology 2003, 84(2):391-397.
  • [37]Reyer HU, Niederer B, Hettyey A: Variation in fertilisation abilities between hemiclonal hybrid and sexual parental males of sympatric water frogs (Rana lessonae, R. esculenta, R. ridibunda). Behav Ecol Sociobiol 2003, 54(3):274-284.
  • [38]Tietje GA, Reyer HU, Fox S: Larval development and recruitment of juveniles in a natural population of Rana lessonae and Rana esculenta. Copeia 2004, 2004(3):638-646.
  • [39]Waelti M, Reyer HU: Food supply modifies the trade-off between past and future reproduction in a sexual parasite-host system (Rana esculenta, Rana lessonae). Oecologia 2007, 152(3):415-424.
  • [40]Lengagne T, Grolet O, Joly P: Male mating speed promote hybridization in the Rana lessonae - Rana esculenta waterfrog system. Behav Ecol Sociobiol 2006, 60(2):123-130.
  • [41]Abt G, Reyer HU: Mate choice and fitness in a hybrid frog: Rana esculenta females prefer Rana lessonae males over their own. Behav Ecol Sociobiol 1993, 32(4):221-228.
  • [42]Bergen K, Semlitsch RD, Reyer HU: Hybrid female matings are directly related to the availability of Rana lessonae and Rana esculenta males in experimental populations. Copeia 1997, 1997(2):275-283.
  • [43]Reyer H, Frei G, Som C: Cryptic female choice: frogs reduce clutch size when amplexed by undesired males. Proc Roy Soc Lond B Biol Sci 1999, 266(1433):2101-2107.
  • [44]Roesli M, Reyer HU: Male vocalization and female choice in the hybridogenetic Rana lessonae/Rana esculenta complex. Anim Behav 2000, 60(6):745-755.
  • [45]Engeler B, Reyer HU: Choosy females and indiscriminate males: mate choice in mixed populations of sexual and hybridogenetic water frogs (Rana lessonae, Rana esculenta). Behav Ecol 2001, 12(5):600-606.
  • [46]Lande R: Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci 1981, 78(6):3721-3725.
  • [47]Kirkpatrick M: Sexual selection and the evolution of female choice. Evolution 1982, 36:1-12.
  • [48]Wu CI: A stochastic simulation study on speciation by sexual selection. Evolution 1985, 39:66-82.
  • [49]Higashi M, Takimoto G, Yamamura N: Sympatric speciation by sexual selection. Nature 1999, 402:523-526.
  • [50]Takimoto G, Higashi M, Yamamura N: A deterministic genetic model for sympatric speciation by sexual selection. Evolution 2000, 54(6):1870-1881.
  • [51]van Doorn GS, Weissing FJ: Ecological versus sexual selection models of sympatric speciation: a synthesis. Selection 2002, 2:17-40.
  • [52]Arnegard ME, Kondrashov AS: Sympatric speciation by sexual selection alone is unlikely. Evolution 2004, 58(2):222-237.
  • [53]Kirkpatrick M, Nuismer S: Sexual selection can constrain sympatric speciation. Proc Roy Soc Lond B Biol Sci 2004, 271(1540):687-693.
  • [54]Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A: A methodology for the stochastic modeling and simulation of sympatric speciation by sexual selection. J Biol Syst 2009, 17(03):349-376.
  • [55]Moore WS, McKay FE: Coexistence in unisexual-bisexual species complexes of Poeciliopsis (Pisces: Poeciliidae). Ecology 1971, 52(5):791-799.
  • [56]Heubel KU, Rankin DJ, Kokko H: How to go extinct by mating too much: population consequences of male mate choice and efficiency in a sexual/asexual species complex. Oikos 2009, 118(4):513-520.
  • [57]Mee JA, Otto SP: Variation in the strength of male mate choices allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution 2010, 64(10):2808-2819.
  • [58]Hellriegel B, Reyer HU: Factors influencing the composition of mixed populations of a hemiclonal hybrid and its sexual host. J Evol Biol 2000, 13(6):906-918.
  • [59]Som C, Anholt BR, Reyer HU: The effect of assortative mating on the coexistence of a hybridogenetic waterfrog and its sexual host. Am Nat 2000, 156:34-46.
  • [60]Reyer HU, W alti MO, B attig I, Altwegg R, Hellriegel B: Low proportions of reproducing hemiclonal females increase the stability of a sexual parasite-host system (Rana esculenta, R. lessonae). J Anim Ecol 2004, 73(6):1089-1101.
  • [61]Vorburger C, Schmeller DS, Hotz H, Guex GD, Reyer HU: Masked damage: mutational load in hemiclonal water frogs. In Lost Sex. Edited by Schön I, Martens K, Dijk P. Netherlands: Springer; 2009:433-446.
  • [62]Turner GF, Burrows MT: A model of sympatric speciation by sexual selection. Proc Biol Sci 1995, 260(1359):287-292.
  • [63]Beverton R, Holt S: On the Dynamics of Exploited Fish Populations. Fish and Fisheries Series. London UK: Chapman & Hall; 1957.
  • [64]Kot M: Elements of Mathematical Ecology. Cambridge UK: Cambridge University Press; 2001.
  • [65]Gavrilets S, Vose A, Barluenga M, Salzburger W, Meyer A: Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Mol Ecol 2007, 16(14):2893-2909.
  • [66]Gavrilets S: Rapid transition towards the division of labor via evolution of developmental plasticity. PLoS Comput Biol 2010, 6(6):e1000805.
  • [67]AlSharawi Z, Rhouma MBH: The discrete Beverton-Holt model with periodic harvesting in a periodically fluctuating environment. Adv Difference Equations 2010, 2010. doi:10.1155/2010/215875
  • [68]Barbuti R, Mautner S, Carnevale G, Milazzo P, Rama A, Sturmbauer C: Population dynamics with a mixed type of sexual and asexual reproduction in a fluctuating environment. BMC Evol Biol 2012, 12:1-13. doi:10.1186/1471-2148-12-49 BioMed Central Full Text
  • [69]Barbuti R, Cataudella S, Maggiolo-Schettini A, Milazzo P, Troina A: A probabilistic model for molecular systems. Fundamenta Informaticae 2005, 67:13-27.
  • [70]Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A: A calculus of looping sequences for modelling microbiological systems. Fundamenta Informaticae 2006, 72:21-35.
  • [71]Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A: Bisimulation congruences in the calculus of looping sequences. In Theoretical Aspects of Computing - ICTAC 2006, Volume 4281 of Lecture Notes in Computer Science. Edited by Barkaoui K, Cavalcanti A, Cerone A. Berlin-Heidelberg: Springer; 2006:93-107.
  • [72]Barbuti R, Maggiolo-Schettini A, Milazzo P, Tiberi P, Troina A: Stochastic calculus of looping sequences for the modelling and simulation of cellular pathways. In Transactions on Computational Systems Biology IX, Volume 5121 of Lecture Notes in Computer Science. Edited by Priami C. Berlin-Heidelberg: Springer; 2008:86-113.
  • [73]Barbuti R, Caravagna G, Maggiolo-Schettini A, Milazzo P, Pardini G: The calculus of looping sequences. In Formal Methods for Computational Systems Biology, Volume 5016 of Lecture Notes in Computer Science. Berlin Heidelberg: Springer; 2008:387-423.
  • [74]Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A: Bisimulations in calculi modelling membranes. Formal Aspect Comput 2008, 20(4–5):351-377.
  • [75]Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G: Spatial calculus of looping sequences. Theor Comput Sci 2011, 412(43):5976-6001.
  • [76]Drake JW, Charlesworth B, Charlesworth D, Crow JF: Rates of spontaneous mutation. Genetics 1998, 148(4):1667-1686.
  • [77]Pagano A, Dubois A, Lesbarrères D, Lodé T: Frog alien species: a way for genetic invasion? Comptes Rendus Biologies 2003, 326, Supplement 1(0):85-92.
  文献评价指标  
  下载次数:48次 浏览次数:14次