期刊论文详细信息
BMC Structural Biology
Integrative structural modeling with small angle X-ray scattering profiles
Andrej Sali1  Seung Joong Kim2  Dina Schneidman-Duhovny1 
[1] UCSF MC 2552, Byers Hall at Mission Bay, Suite 503B, University of California at San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA;Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco, USA
关键词: Integrative modeling;    Macromolecular assembly;    Protein structure prediction;    Small Angle X-ray Scattering (SAXS);   
Others  :  1092107
DOI  :  10.1186/1472-6807-12-17
 received in 2012-04-17, accepted in 2012-07-16,  发布年份 2012
PDF
【 摘 要 】

Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS) profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

【 授权许可】

   
2012 Schneidman-Duhovny et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128180334533.pdf 1802KB PDF download
Figure 6. 97KB Image download
Figure 5. 33KB Image download
Figure 4. 80KB Image download
Figure 3. 33KB Image download
Figure 2. 49KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, Tsutakawa SE, Jenney FE, Classen S, Frankel KA, Hopkins RC, et al.: Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 2009, 6(8):606-612.
  • [2]Svergun DI: Small-angle X-ray and neutron scattering as a tool for structural systems biology. Biol Chem 2010, 391(7):737-743.
  • [3]Mertens HD, Svergun DI: Structural characterization of proteins and complexes using small-angle X-ray solution scattering. Journal of structural biology 2010, 172(1):128-141.
  • [4]Jacques DA, Trewhella J: Small-angle scattering for structural biology–expanding the frontier while avoiding the pitfalls. Protein science: a publication of the Protein Society 2010, 19(4):642-657.
  • [5]Grant TD, Luft JR, Wolfley JR, Tsuruta H, Martel A, Montelione GT, Snell EH: Small angle X-ray scattering as a complementary tool for high-throughput structural studies. Biopolymers 2011, 95(8):517-530.
  • [6]Glatter O, Kratky O: Small angle x-ray scattering. Academic Press, London; 1982.
  • [7]Koch MH, Vachette P, Svergun DI: Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 2003, 36(2):147-227.
  • [8]Putnam CD, Hammel M, Hura GL, Tainer JA: X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 2007, 40(3):191-285.
  • [9]Rambo RP, Tainer JA: Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 2011, 95(8):559-571.
  • [10]Feigin LA, Svergun DI, Taylor GW: Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York; 1987.
  • [11]Bernado P: Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. European biophysics journal: EBJ 2010, 39(5):769-780.
  • [12]Rambo RP, Tainer JA: Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 2010, 20(1):128-137.
  • [13]Svergun DI: Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 1999, 76(6):2879-2886.
  • [14]Franke D, Svergun DI: DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. Journal of Applied Crystallography 2009, 42(2):342-346.
  • [15]Svergun DI, Petoukhov MV, Koch MH: Determination of domain structure of proteins from X-ray solution scattering. Biophys J 2001, 80(6):2946-2953.
  • [16]Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, et al.: XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J Biol Chem 2011, 286(37):32638-32650.
  • [17]Fenton AW, Williams R, Trewhella J: Changes in small-angle X-ray scattering parameters observed upon binding of ligand to rabbit muscle pyruvate kinase are not correlated with allosteric transitions. Biochemistry 2010, 49(33):7202-7209.
  • [18]Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234(3):779-815.
  • [19]Zheng W, Doniach S: Protein structure prediction constrained by solution X-ray scattering data and structural homology identification. J Mol Biol 2002, 316(1):173-187.
  • [20]Zheng W, Doniach S: Fold recognition aided by constraints from small angle X-ray scattering data. Protein Eng Des Sel 2005, 18(5):209-219.
  • [21]Dos Reis MA, Aparicio R, Zhang Y: Improving protein template recognition by using small-angle x-ray scattering profiles. Biophysical journal 2011, 101(11):2770-2781.
  • [22]Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M, Fersht AR: Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(15):5762-5767.
  • [23]Petoukhov MV, Svergun DI: Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 2005, 89(2):1237-1250.
  • [24]Förster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A: Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 2008, 382(4):1089-1106.
  • [25]Perkins SJ, Bonner A: Structure determinations of human and chimaeric antibodies by solution scattering and constrained molecular modelling. Biochemical Society transactions 2008, 36(Pt 1):37-42.
  • [26]Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED: Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 2009, 326(5958):1373-1379.
  • [27]Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI: Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 2007, 129(17):5656-5664.
  • [28]Pelikan M, Hura GL, Hammel M: Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 2009, 28(2):174-189.
  • [29]Hammel M: Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). European biophysics journal: EBJ 2012. in press
  • [30]Williamson TE, Craig BA, Kondrashkina E, Bailey-Kellogg C, Friedman AM: Analysis of self-associating proteins by singular value decomposition of solution scattering data. Biophys J 2008, 94(12):4906-4923.
  • [31]Kim SJ, Dumont C, Gruebele M: Simulation-based fitting of protein-protein interaction potentials to SAXS experiments. Biophysical journal 2008, 94(12):4924-4931.
  • [32]Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, et al.: Determining the architectures of macromolecular assemblies. Nature 2007, 450(7170):683-694.
  • [33]Russel D, Lasker K, Webb B, Velazquez-Muriel J, Tjioe E, Schneidman-Duhovny D, Peterson B, Sali A: Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS biology 2012, 10(1):e1001244.
  • [34]Svergun D, Barberato C, Koch MHJ: CRYSOL - a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. Journal of Applied Crystallography 1995, 28(6):768-773.
  • [35]Zuo X, Cui G, Merz KM, Zhang L, Lewis FD, Tiede DM: X-ray diffraction “fingerprinting” of DNA structure in solution for quantitative evaluation of molecular dynamics simulation. Proceedings of the National Academy of Sciences of the United States of America 2006, 103(10):3534-3539.
  • [36]Tjioe E, Heller WT: ORNL_SAS: software for calculation of small-angle scattering intensities of proteins and protein complexes. Journal of Applied Crystallography 2007, 40(4):782-785.
  • [37]Bardhan J, Park S, Makowski L: SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules. Journal of Applied Crystallography 2009, 42(Pt 5):932-943.
  • [38]Yang S, Park S, Makowski L, Roux B: A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J 2009, 96(11):4449-4463.
  • [39]Park S, Bardhan JP, Roux B, Makowski L: Simulated x-ray scattering of protein solutions using explicit-solvent models. J Chem Phys 2009, 130(13):134114.
  • [40]Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T: Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. BMC Bioinformatics 2010, 11:429. BioMed Central Full Text
  • [41]Grishaev A, Guo L, Irving T, Bax A: Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. Journal of the American Chemical Society 2010, 132(44):15484-15486.
  • [42]Schneidman-Duhovny D, Hammel M, Sali A: FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 2010, 38(Suppl):W540-W544.
  • [43]Poitevin F, Orland H, Doniach S, Koehl P, Delarue M: AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic acids research 2011, 39(Web Server issue):W184-W189.
  • [44]Virtanen JJ, Makowski L, Sosnick TR, Freed KF: Modeling the hydration layer around proteins: applications to small- and wide-angle x-ray scattering. Biophysical journal 2011, 101(8):2061-2069.
  • [45]Liu H, Morris RJ, Hexemer A, Grandison S, Zwart PH: Computation of small-angle scattering profiles with three-dimensional Zernike polynomials. Acta Crystallogr A 2012, 68(Pt 2):278-285.
  • [46]Debye P: Zerstreuung von Röntgenstrahlen. Annalen der Physik 1915, 351(6):809-823.
  • [47]Fraser RDB, MacRae TP, Suzuki E: An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules. Journal of Applied Crystallography 1978, 11(6):693-694.
  • [48]Lattman EE: Rapid calculation of the solution scattering profile from a macromolecule of known structure. Proteins 1989, 5(2):149-155.
  • [49]Sampathkumar P, Ozyurt SA, Do J, Bain KT, Dickey M, Rodgers LA, Gheyi T, Sali A, Kim SJ, Phillips J, et al.: Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145. Proteins 2010, 78(8):1992-1998.
  • [50]Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI: PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography 2003, 36(5):1277-1282.
  • [51]Hammel M, Rey M, Yu Y, Mani RS, Classen S, Liu M, Pique ME, Fang S, Mahaney BL, Weinfeld M, et al.: XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. The Journal of biological chemistry 2011, 286(37):32638-32650.
  • [52]Fiser A: Template-based protein structure modeling. Methods in molecular biology 2010, 673:73-94.
  • [53]Remmert M, Biegert A, Hauser A, Soding J: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature methods 2012, 9(2):173-175.
  • [54]Rykunov D, Steinberger E, Madrid-Aliste CJ, Fiser A: Improved scoring function for comparative modeling using the M4T method. Journal of structural and functional genomics 2009, 10(1):95-99.
  • [55]Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and associated resources. Nucleic acids research 2009, 37(Database issue):D387-D392.
  • [56]Kim DE, Chivian D, Baker D: Protein structure prediction and analysis using the Robetta server. Nucleic acids research 2004, 32(Web Server issue):W526-W531.
  • [57]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008, 9:40. BioMed Central Full Text
  • [58]Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC, et al.: ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic acids research 2011, 39(Database issue):D465-D474.
  • [59]Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE: UCSF Chimera, MODELLER, and IMP: An integrated modeling system. Journal of structural biology 2011, 2011: . in press
  • [60]Sokolova AV, Volkov VV, Svergun DI: Prototype of a database for rapid protein classification based on solution scattering data. Journal of Applied Crystallography 2003, 36(3 Part 1):865-868.
  • [61]Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic acids research 2000, 28(1):235-242.
  • [62]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology 2007, 372(3):774-797.
  • [63]Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA: 3D complex: a structural classification of protein complexes. PLoS computational biology 2006, 2(11):e155.
  • [64]Gorba C, Tama F: Normal Mode Flexible Fitting of High-Resolution Structures of Biological Molecules Toward SAXS Data. Bioinform Biol Insights 2010, 4:43-54.
  • [65]Zheng W, Tekpinar M: Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell. Biophysical journal 2011, 101(12):2981-2991.
  • [66]Yang S, Blachowicz L, Makowski L, Roux B: Multidomain assembled states of Hck tyrosine kinase in solution. Proceedings of the National Academy of Sciences of the United States of America 2010, 107(36):15757-15762.
  • [67]Rozycki B, Kim YC, Hummer G: SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 2011, 19(1):109-116.
  • [68]Williams GJ, Williams RS, Williams JS, Moncalian G, Arvai AS, Limbo O, Guenther G, SilDas S, Hammel M, Russell P, et al.: ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nature structural & molecular biology 2011, 18(4):423-431.
  • [69]Kathuria SV, Guo L, Graceffa R, Barrea R, Nobrega RP, Matthews CR, Irving TC, Bilsel O: Minireview: structural insights into early folding events using continuous-flow time-resolved small-angle X-ray scattering. Biopolymers 2011, 95(8):550-558.
  • [70]Uzawa T, Kimura T, Ishimori K, Morishima I, Matsui T, Ikeda-Saito M, Takahashi S, Akiyama S, Fujisawa T: Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: implication of the scaling relationship for the submillisecond intermediates of protein folding. J Mol Biol 2006, 357(3):997-1008.
  • [71]Wu Y, Kondrashkina E, Kayatekin C, Matthews CR, Bilsel O: Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Proc Natl Acad Sci U S A 2008, 105(36):13367-13372.
  • [72]Kim SJ, Matsumura Y, Dumont C, Kihara H, Gruebele M: Slowing down downhill folding: a three-probe study. Biophysical journal 2009, 97(1):295-302.
  • [73]Lindorff-Larsen K, Piana S, Dror RO, Shaw DE: How fast-folding proteins fold. Science 2011, 334(6055):517-520.
  • [74]Tuma R, Tsuruta H, French KH, Prevelige PE: Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid. J Mol Biol 2008, 381(5):1395-1406.
  • [75]Lee KK, Tsuruta H, Hendrix RW, Duda RL, Johnson JE: Cooperative reorganization of a 420 subunit virus capsid. J Mol Biol 2005, 352(3):723-735.
  • [76]Matsui T, Tsuruta H, Johnson JE: Balanced electrostatic and structural forces guide the large conformational change associated with maturation of T = 4 virus. Biophysical journal 2010, 98(7):1337-1343.
  • [77]Vestergaard B, Groenning M, Roessle M, Kastrup JS, van de Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI: A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 2007, 5(5):e134.
  • [78]Fowler AG, Foote AM, Moody MF, Vachette P, Provencher SW, Gabriel A, Bordas J, Koch MH: Stopped-flow solution scattering using synchrotron radiation: apparatus, data collection and data analysis. J Biochem Biophys Methods 1983, 7(4):317-329.
  • [79]Chen L, Wildegger G, Kiefhaber T, Hodgson KO, Doniach S: Kinetics of lysozyme refolding: structural characterization of a non-specifically collapsed state using time-resolved X-ray scattering. Journal of Molecular Biology 1998, 276(1):225-237.
  • [80]Perez J, Vachette P, Russo D, Desmadril M, Durand D: Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering. Journal of Molecular Biology 2001, 308(4):721-743.
  • [81]Ghoorah AW, Devignes MD, Smail-Tabbone M, Ritchie DW: Spatial clustering of protein binding sites for template based protein docking. Bioinformatics 2011, 27(20):2820-2827.
  • [82]Kundrotas PJ, Zhu Z, Vakser IA: GWIDD: Genome-wide protein docking database. Nucleic acids research 2010, 38(Database issue):D513-D517.
  • [83]Sinha R, Kundrotas PJ, Vakser IA: Protein docking by the interface structure similarity: how much structure is needed? PLoS ONE 2012, 7(2):e31349.
  • [84]Stein A, Ceol A, Aloy P: 3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic acids research 2011, 39(Database issue):D718-D723.
  • [85]Winter C, Henschel A, Kim WK, Schroeder M: SCOPPI: a structural classification of protein-protein interfaces. Nucleic acids research 2006, 34(Database issue):D310-D314.
  • [86]Tuncbag N, Keskin O, Nussinov R, Gursoy A: Fast and accurate modeling of protein-protein interactions by combining template-interface-based docking with flexible refinement. Proteins 2012, 80(4):1239-1249.
  • [87]Vajda S, Camacho CJ: Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol 2004, 22(3):110-116.
  • [88]Lensink MF, Wodak SJ: Docking and scoring protein interactions: CAPRI 2009. Proteins 2010, 78(15):3073-3084.
  • [89]Pons C, D’Abramo M, Svergun DI, Orozco M, Bernado P, Fernandez-Recio J: Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J Mol Biol 2010, 403(2):217-230.
  • [90]Schneidman-Duhovny D, Hammel M, Sali A: Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 2011, 173(3):461-471.
  • [91]Gabb HA, Jackson RM, Sternberg MJ: Modelling protein docking using shape complementarity, electrostatics and biochemical information. Journal of molecular biology 1997, 272(1):106-120.
  • [92]Cheng TM, Blundell TL, Fernandez-Recio J: pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 2007, 68(2):503-515.
  • [93]Duhovny D, Nussinov R, Wolfson HJ: Efficient Unbound Docking of Rigid Molecules. In Second International Workshop, WABI 2002. Springer Berlin/Heidelberg, Rome, Italy; 2002:185-200.
  • [94]Andrusier N, Nussinov R, Wolfson HJ: FireDock: fast interaction refinement in molecular docking. Proteins 2007, 69(1):139-159.
  • [95]Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HDT, Konarev PV, Svergun DI: New developments in the ATSAS program package for small-angle scattering data analysis. Journal of Applied Crystallography 2012, 45(2):342-350.
  • [96]Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: Geometry-based flexible and symmetric protein docking. Proteins 2005, 60(2):224-231.
  • [97]Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ: PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005, 33(Web Server issue):W363-W367.
  • [98]Webb B, Lasker K, Schneidman-Duhovny D, Tjioe E, Phillips J, Kim SJ, Velazquez-Muriel J, Russel D, Sali A: Modeling of proteins and their assemblies with the integrative modeling platform. Methods in molecular biology 2011, 781:377-397.
  • [99]Bonvin AM, Boelens R, Kaptein R: NMR analysis of protein interactions. Curr Opin Chem Biol 2005, 9(5):501-508.
  • [100]Wang X, Lee HW, Liu Y, Prestegard JH: Structural NMR of protein oligomers using hybrid methods. Journal of structural biology 2011, 173(3):515-529.
  • [101]Kaveti S, Engen JR: Protein interactions probed with mass spectrometry. Methods in molecular biology 2006, 316:179-197.
  • [102]de Vries SJ, Bonvin AM: CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS ONE 2011, 6(3):e17695.
  • [103]McCoy MA, Wyss DF: Structures of protein-protein complexes are docked using only NMR restraints from residual dipolar coupling and chemical shift perturbations. Journal of the American Chemical Society 2002, 124(10):2104-2105.
  • [104]Grishaev A, Ying J, Canny MD, Pardi A, Bax A: Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data. Journal of biomolecular NMR 2008, 42(2):99-109.
  • [105]Berlin K, O’Leary DP, Fushman D: Structural assembly of molecular complexes based on residual dipolar couplings. Journal of the American Chemical Society 2010, 132(26):8961-8972.
  • [106]van Dijk AD, Kaptein R, Boelens R, Bonvin AM: Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. Journal of biomolecular NMR 2006, 34(4):237-244.
  • [107]Ryabov Y, Fushman D: Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor. Journal of the American Chemical Society 2007, 129(25):7894-7902.
  • [108]Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H: Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nature structural & molecular biology 2010, 17(9):1037-1042.
  • [109]Rappsilber J: The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. Journal of structural biology 2011, 173(3):530-540.
  • [110]Brunger AT, Strop P, Vrljic M, Chu S, Weninger KR: Three-dimensional molecular modeling with single molecule FRET. Journal of structural biology 2011, 173(3):497-505.
  文献评价指标  
  下载次数:91次 浏览次数:23次