期刊论文详细信息
BMC Medical Research Methodology
Derivation and assessment of risk prediction models using case-cohort data
Lisa Pennells3  Thor Aspelund1  Ian R White2  Simon G Thompson3  Jean Sanderson3 
[1] Icelandic Heart Association, Kopavogur 201, Iceland;MRC Biostatistics Unit, Cambridge CB2 0SR, UK;Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
关键词: Cardiovascular disease;    Reclassification;    Discrimination;    Risk prediction;    Case-cohort;   
Others  :  1091771
DOI  :  10.1186/1471-2288-13-113
 received in 2013-01-16, accepted in 2013-09-09,  发布年份 2013
PDF
【 摘 要 】

Background

Case-cohort studies are increasingly used to quantify the association of novel factors with disease risk. Conventional measures of predictive ability need modification for this design. We show how Harrell’s C-index, Royston’s D, and the category-based and continuous versions of the net reclassification index (NRI) can be adapted.

Methods

We simulated full cohort and case-cohort data, with sampling fractions ranging from 1% to 90%, using covariates from a cohort study of coronary heart disease, and two incidence rates. We then compared the accuracy and precision of the proposed risk prediction metrics.

Results

The C-index and D must be weighted in order to obtain unbiased results. The NRI does not need modification, provided that the relevant non-subcohort cases are excluded from the calculation. The empirical standard errors across simulations were consistent with analytical standard errors for the C-index and D but not for the NRI. Good relative efficiency of the prediction metrics was observed in our examples, provided the sampling fraction was above 40% for the C-index, 60% for D, or 30% for the NRI. Stata code is made available.

Conclusions

Case-cohort designs can be used to provide unbiased estimates of the C-index, D measure and NRI.

【 授权许可】

   
2013 Sanderson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128174209458.pdf 362KB PDF download
Figure 4. 37KB Image download
Figure 3. 27KB Image download
Figure 2. 49KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Prentince RL: A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 1986, 73:1-11.
  • [2]Barlow WE, Ichikawa L, Rosner D, Izumi S: Analysis of case-cohort designs. J Clin Epidemiol 1999, 52:1165-1172.
  • [3]Onland-Moret N, Vandera D, Vanderschouw Y, Buschers W, Elias S, Vangils C, Koerselman J, Roest M, Grobbee D, Peeters P: Analysis of case-cohort data: a comparison of different methods. J Clin Epidemiol 2007, 60:350-355.
  • [4]Ganna A, Reilly M, de Faire U, Pedersen N, Magnusson P, Ingelsson E: Risk prediction measures for case-cohort and nested case–control designs: an application to cardiovascular disease. Am J Epidemiol 2012, 175:715-724.
  • [5]Chambless LE, Diao G: Estimation of time-dependent area under the ROC curve for long-term risk prediction. Stat Med 2006, 25:3474-3486.
  • [6]Folsom AR, Chambless LE, Ballantyne CM, Coresh J, Heiss G, Wu KK, Boerwinkle E, Mosley TH Jr, Sorlie P, Diao G, et al.: An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the atherosclerosis risk in communities study. Arch Intern Med 2006, 166:1368-1373.
  • [7]Herder C, Baumert J, Zierer A, Roden M, Meisinger C, Karakas M, Chambless L, Rathmann W, Peters A, Koenig W, et al.: Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS One 2011, 6:e19852.
  • [8]Vaarhorst AA, Lu Y, Heijmans BT, Dolle ME, Bohringer S, Putter H, Imholz S, Merry AH, van Greevenbroek MM, Jukema JW, et al.: Literature-based genetic risk scores for coronary heart disease: the Cardiovascular Registry Maastricht (CAREMA) prospective cohort study. Circ Cardiovasc Genet 2012, 5:202-209.
  • [9]Danesh J, Saracci R, Berglund G, Feskens E, Overvad K, Panico S, Thompson S, Fournier A, Clavel-Chapelon F, Canonico M, et al.: EPIC-Heart: the cardiovascular component of a prospective study of nutritional, lifestyle and biological factors in 520,000 middle-aged participants from 10 European countries. Eur J Epidemiol 2007, 22:129-141.
  • [10]Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA: Evaluating the yield of medical tests. JAMA 1982, 247:2543-2546.
  • [11]Harrell FE Jr, Lee KL, Mark DB: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996, 15:361-387.
  • [12]Royston P, Sauerbrei W: A new measure of prognostic separation in survival data. Stat Med 2004, 23:723-748.
  • [13]Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008, 27:157-172.
  • [14]Pencina MJ, D’Agostino RB Sr, Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011, 30:11-21.
  • [15]Jonsdottir LS, Sigfusson N, Gudnason V, Sigvaldason H, Thorgeirsson G: Do lipids, blood pressure, diabetes, and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk 2002, 9:67-76.
  • [16]Cox DR: Regression Models and Life-Tables. J R Stat Soc Ser B Methodol 1972, 37:187-220.
  • [17]Self SG, Prentice RL: Asymptotic distribution theory and efficiency results for case-cohort studies. Ann Stat 1988, 16:64-81.
  • [18]Langholz B, Jiao J: Computational methods for case-cohort studies. Comput Stat Data Anal 2007, 51:3737-3748.
  • [19]Kulathinal S, Karvanen J, Saarela O, Kuulasmaa K: Case-cohort design in practice - experiences from the MORGAM Project. Epidemiol Perspect Innov 2007, 4:15. BioMed Central Full Text
  • [20]Graf E, Schmoor C, Sauerbrei W, Schumacher M: Assessment and comparison of prognostic classification schemes for survival data. Stat Med 1999, 18:2529-2545.
  • [21]Schemper M, Stare J: Explained variation in survival analysis. Stat Med 1996, 15:1999-2012.
  • [22]Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW: Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010, 21:128-138.
  • [23]Newson R: Confidence intervals for rank statistics: Somers’ D and extensions. Stata J 2006, 6:309-334.
  • [24]Stata Statistical Software: Release 11. College Station, TX: StataCorp LP; 2009.
  • [25]The Emerging Risk Factors Collaboration: Lipid-related markers and cardiovascular disease prediction. JAMA 2012, 307:2499-2506.
  • [26]The Emerging Risk Factors Collaboration: C-reactive protein, fibrinogen, and cardiovascular disease prediction. NEJM 2012, 367:1310-1320.
  • [27]Gonen M, Heller G: Concordance probability and discriminatory power in proportional hazards regression. Biometrika 2005, 92:965-970.
  • [28]Wolbers M, Koller MT, Witteman JC, Steyerberg EW: Prognostic models with competing risks: methods and application to coronary risk prediction. Epidemiology 2009, 20:555-561.
  文献评价指标  
  下载次数:67次 浏览次数:12次