BMC Systems Biology | |
Validation of a model of the GAL regulatory system via robustness analysis of its bistability characteristics | |
Francesco Amato1  Declan G Bates2  Alessio Merola1  Carlo Cosentino1  Luca Salerno1  | |
[1] Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy;College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, UK | |
关键词: Global sensitivity; Local sensitivity; Bifurcation; Domain of attraction; Robustness; Bistability; Galactose network; | |
Others : 1142835 DOI : 10.1186/1752-0509-7-39 |
|
received in 2012-09-27, accepted in 2013-04-26, 发布年份 2013 | |
【 摘 要 】
Background
In Saccharomyces cerevisiæ, structural bistability generates a bimodal expression of the galactose uptake genes (GAL) when exposed to low and high glucose concentrations. This indicates that yeast cells can decide between using either the limited amount of glucose or growing on galactose under changing environmental conditions. A crucial requirement for any plausible mechanistic model of this system is that it reproduces the robustness of the bistable response observed in vivo against inter-individual parametric variability and fluctuating environmental conditions.
Results
We show how a control-theoretic analysis of the robustness of a model of the GAL regulatory network may be used to establish the model’s plausibility in characterizing the persistent memory of different carbon sources, without the need for extensive simulations. Chemical Reaction Network Theory is used to establish that the proposed network model is compatible with structural bistability. The robustness of each of the two operative conditions against fluctuations of the species concentrations is demonstrated by studying the Domains of Attraction of the corresponding equilibrium points. Finally, we use a global robustness analysis method based on Semi-Definite Programming to evaluate the modification of the bistable steady states induced by multiple parametric variations throughout bounded regions of the parameter space.
Conclusions
Our analysis provides convincing evidence for the robustness, and hence plausibility, of the GAL regulatory network model. The proposed workflow also demonstrates the power of analytical methods from control theory to provide a direct quantitative characterization of the dynamics of multistable biomolecular regulatory systems without recourse to extensive computer simulations.
【 授权许可】
2013 Salerno et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150328165958756.pdf | 1664KB | download | |
Figure 6. | 35KB | Image | download |
Figure 2. | 46KB | Image | download |
Figure 4. | 47KB | Image | download |
Figure 3. | 22KB | Image | download |
Figure 2. | 124KB | Image | download |
Figure 1. | 41KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 2.
Figure 6.
【 参考文献 】
- [1]Bhat PJ: Galactose Regulon of Yeast: From Genetics to Systems Biology. Berlin: Spring-Verlag; 2008.
- [2]Acar M, Becskei A, van Oudenaarden A: Enhancement of cellular memory by reducing stochastic transitions. Nature 2005, 435(7039):228-232.
- [3]de Atauri P, Orrell D, Ramsey S, Bolouri H: Evolution of ‘design’ principles in biochemical networks. Syst Biology, IEE Proc 2004, 1:28-40.
- [4]Yang R, Lenaghan SC, Wikswo JP, Zhang M: External control of the GAL network in S. cerevisiae: A view from control theory. PLoS ONE 2011, 6(4):e19353.
- [5]Smidtas S, Schäcter V, Képès F: The adaptive filter of the yeast galactose pathway. J Theor Biol 2006, 242(2):372-381.
- [6]Kulkarni VV, Kareenhalli V, Malakar PP, Pao LY, Safonov MG, Viswanathan A Ganesh: Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Bioinformatics 2010, 11(Suppl 1):S43. BioMed Central Full Text
- [7]Cosentino C, Salerno L, Passanti A, Merola A, Bates DG, Amato F: Structural bistability of the GAL regulatory network and characterization of its domains of attraction. J Comput Biol 2012, 19(2):148-162.
- [8]Mélykúti B, August E, Papachristodoulou A, El-Samad H: Discriminating between rival biochemical network models: three approaches to optimal experiment design. BMC Syst Biol 2010, 4:38. BioMed Central Full Text
- [9]Wagner A: Robustness and Evolvability in Living Systems. Princeton: Princeton University Press; 2005.
- [10]Morohashi M, Winn AE, Borisuk MT, Bolouri H, Doyle J, Kitano H: Robustness as a measure of plausibility in models of biochemical networks. J Theor Biol 2002, 216:19-30.
- [11]Bates DG, Cosentino C: Validation and invalidation of systems biology models using robustness analysis. IET Syst Biol 2011, 5(4):229-244.
- [12]Anderson J, Papachristodoulou A: On validation and invalidation of biological models. BMC Bioinformatics 2009, 10:132. BioMed Central Full Text
- [13]Amato F, Cosentino C, Merola A: On the region of attraction of nonlinear quadratic systems. Automatica 2007, 43(12):2119-2123.
- [14]Amato F, Calabrese F, Cosentino C, Merola A: Stability analysis of nonlinear quadratic systems via polyhedral lyapunov functions. Automatica 2011, 47(3):614-617.
- [15]Stelling J, Sauer U, Szallasi Z, Doyle III FJ, Doyle J: Robustness of cellular functions. Cell 2004, 118(6):675-685.
- [16]Eißing T, Waldherr S, Allgöwer F, Scheurich P, Bullinger E: Steady state and (bi-) stability evaluation of simple protease signalling networks. BioSystems 2007, 90(3):591-601.
- [17]Kim J, Bates DG, Postlethwaite I, Ma L, Iglesias PA: Robustness analysis of biochemical network models. IEE Proc: Syst Biol 2006, 153(3):96-104.
- [18]Blüthgen N, Herzel H: How robust are switches in intracellular signaling cascades? J Theor Biol 2003, 225(3):293-300.
- [19]Eißing T, Allgöwer F, Bullinger E: Robustness properties of apoptosis models with respect to parameter variations and intrinsic noise. Syst Biol, IEE Proc 2005, 152(4):221-228.
- [20]Waldherr S, Findeisen R, Allgower F: Global sensitivity analysis of biochemical reaction networks via semidefinite programming. Proc. of 17th World Congress, The International Federation of Automatic Control: 6-11 July 2008; Seoul, Korea 2008, 9701-9706.
- [21]Hasenauer J, Rumschinski P, Waldherr S, Borchers S, Allgöwer F, Findeisen R: Guaranteed steady state bounds for uncertain (bio-)chemical processes using infeasibility certificates. J Process Control 2010, 20(9):1076-1083.
- [22]Angeli D, Ferrell JEJ, Sontag ED: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Nat Acad Sci USA 2004, 101(7):1822-1827.
- [23]Feinberg M: Chemical reaction network structure and the stability of complex isothermal reactors-I. The deficiency zero and deficiency one theorems. Chem Eng Sci 1987, 42(10):2229-2268.
- [24]Feinberg M: Chemical reaction network structure and the stability of complex isothermal reactors-II. Multiple steady states for networks of deficiency one. Chem Eng Sci 1988, 43:1-25.
- [25]Ruhela A, Verma M, Edwards JS, Bhat PJ, Bhartiya S, Venkatesh KV: Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiæ. FEBS Lett 2004, 576(12):119-126.
- [26]Pannala VR, Hazarika SJ, Bhat PJ, Bhartiya S, Venkatesh KV: Growth-related model of the GAL system in saccharomyces cerevisiae predicts behaviour of several mutant strains. IET Syst Biol 2012, 6(2):44-53.
- [27]Ingalls BP, Sauro HM: Sensitivity analysis of stoichiometric networks: An extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 2003, 222:23-36.
- [28]Cosentino C, Bates DG: Feedback Control in Systems Biology. Boca Raton: CRC Press; 2011.
- [29]Genesio R, Tartaglia M, Vicino A: On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans Autom Control 1985, 30(8):747-755.
- [30]Vannelli A, Vidyasagar M: Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems. Automatica 1985, 21:69-80.
- [31]Chesi G: Estimating the domain of attraction for uncertain polynomial systems. Automatica 2004, 40(11):1981-1986.
- [32]Chesi G: Domain of Attraction. Analysis and control Via SOS Programming. London: Springer-Verlag; 2011.
- [33]El-Samad H, Prajna S, Papachristodoulou A, Doyle J, Khammash M: Advanced methods and algorithms for biological networks analysis. Proc IEEE 2006, 94(4):832-853.
- [34]August E, Papachristodoulou A: A new computational tool for establishing model parameter identifiability. J Comput Biol 2009, 16(6):875-885.
- [35]Topcu U, Packard A: Local stability analysis for uncertain nonlinear systems. IEEE Trans Autom Control 2009, 54:1042-1047.
- [36]Topcu U, Packard A, Seiler P, Balas G: Robust region-of-attraction estimation. IEEE Trans Autom Control 2010, 55:137-141.
- [37]Boyd S, El Ghaoui L, Feron E, Balakrishnan V: Linear Matrix Inequalities in System and Control Theory, Volume 15 of Studies in Applied Mathematics. Philadelphia: SIAM; 1994.
- [38]MathWorks T: MATLAB Robust Control Toolbox. Natick: MathWorks Inc.; 2011.
- [39]Kuznetsov Y: Elements of Applied Bifurcation Theory. No. v. 112 in Applied Mathematical Sciences. Springer; 2004.
- [40]Dhooge A, Govaerts W, Kuznetsov YA: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Software 2003, 29(2):141-164.
- [41]Vandenberghe L, Boyd S: Semidefinite programming. SIAM Rev 1996, 38:49-95.