期刊论文详细信息
Proceedings Mathematical Sciences
Process Convergence of Self-Normalized Sums of i.i.d. Random Variables Coming from Domain of Attraction of Stable Distributions
Gopal K Basak2  Arunangshu Biswas1 
[1] Department of Statistics, Presidency University, / College Street, Kolkata 00 0, India$$;Stat-Math Unit, Indian Statistical Institute, 0 B T Road, Kolkata 00 0, India$$
关键词: Domain of attraction;    process convergence;    self-normalized sums;    stable distributions.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

In this paper we show that the continuous version of the self-normalized process $Y_{n,p}(t)=S_n(t)/V_{n,p}+(nt-[nt])X_{[nt]+1}/V_{n,p},0 < t ≤ 1;p>0$ where $S_n(t)=sum^{[nt]}_{i=1}X_i$ and $V_{(n,p)}=left(sum^n_{i=1}|X_i|^pight)^{1/p}$ and $X_i i.i.d.$ random variables belong to $DA(𝛼)$, has a non-trivial distribution $mathrm{iff}$ 𝑝=𝛼=2. The case for 2>𝑝>𝛼 and 𝑝 ≤𝛼 < 2 is systematically eliminated by showing that either of tightness or finite dimensional convergence to a non-degenerate limiting distribution does not hold. This work is an extension of the work by Csörgő et al. who showed Donsker’s theorem for $Y_{n,2}(cdot p)$, i.e., for $p=2$, holds $mathrm{iff}$ 𝛼=2 and identified the limiting process as a standard Brownian motion in sup norm.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040507029ZK.pdf 223KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:12次