期刊论文详细信息
BMC Genomics
Deciphering the genetic basis of microcystin tolerance
Eric von Elert4  Kathryn Konrad1  Janine Altmüller1  Peter Frommolt3  Kamel Ben-Khalifa2  Susanne Motameny1  Thomas Sadler4  Anke Schwarzenberger4 
[1]University of Cologne, Cologne Center for Genomics, Weyertal 115b, 50931 Cologne, Germany
[2]University of Cologne, RRZK, Weyertal 121, 50931 Cologne, Germany
[3]University of Cologne, CECAD Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
[4]University of Cologne, Cologne Biocenter, Aquatic Chemical Ecology, Zuelpicher Str. 47b, 50674 Cologne, Germany
关键词: Molecular basis;    Transcriptome;    Tolerance;    Microcystin;    Daphnia;   
Others  :  1140656
DOI  :  10.1186/1471-2164-15-776
 received in 2014-05-15, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia’s genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia.

Results

Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones.

Conclusions

Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.

【 授权许可】

   
2014 Schwarzenberger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325074736896.pdf 333KB PDF download
Figure 3. 43KB Image download
Figure 2. 31KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Xia H, Camus-Kulandaivelu L, Stephan W, Tellier A, Zhang Z: Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol 2010, 19:4144-4154.
  • [2]Feldman CR, Brodie ED, Brodie ED, Pfrender ME: The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey. Proc Natl Acad Sci 2009, 106:13415-13420.
  • [3]Van’t Hof AE, Edmonds N, Dalikova M, Marec F, Saccheri IJ: Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 2011, 332:958-960.
  • [4]Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J: Adaptation genomics: the next generation. Trends Ecol Evol 2010, 25:705-712.
  • [5]Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, Bauer DJ, Cáceres CE, Carmel L, Casola C, Choi JH, Detter JC, Dong Q, Dusheyko S, Eads BD, Fröhlich T, Geiler-Samerotte KA, Gerlach D, Hatcher P, Jogdeo S, Krijgsveld J, Kriventseva EV, Kultz D, Laforsch C, Lindquist E, Lopez J, et al.: The ecoresponsive genome of Daphnia pulex. Science 2011, 331:555-561.
  • [6]Jeyasingh PD, Ragavendran A, Paland S, Lopez JA, Sterner RW, Colbourne JK: How do consumers deal with stoichiometric constraints? Lessons from functional genomics using Daphnia pulex. Mol Ecol 2011, 20:2341-2352.
  • [7]Latta LC, Weider LJ, Colbourne JK, Pfrender ME: The evolution of salinity tolerance in Daphnia: a functional genomics approach. Ecol Lett 2012, 15:794-802.
  • [8]Sarnelle O, Wilson AE: Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 2005, 50:1565-1570.
  • [9]Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F: Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc Natl Acad Sci U S A 2001, 98:6256-6260.
  • [10]Blom JF, Baumann H, Codd GA, Jüttner F: Sensitivity and adaptation of aquatic organisms to oscillapeptin J and [D-Asp3,(E)-Dhb7]microcystin-RR. Archiv fuer Hydrobiologie 2006, 167:547-559.
  • [11]Miner BG, De Meester L, Pfrender ME, Lampert W, Hairston NG: Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc Roy Soc Lond B Biol Sci 2013, 279:1873-1882.
  • [12]Asselman J, De Coninck DIM, Glaholt S, Colbourne JK, Janssen CR, Shaw JR, De Schamphelaere KAC: Identification of pathways, gene networks, and paralogous gene families in Daphnia pulex responding to exposure to the toxic cyanobacterium Microcystis aeruginosa. Environ Sci Technol 2012, 46:8448-8457.
  • [13]DeMott WR: Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwat Biol 1999, 42:263-274.
  • [14]Schwarzenberger A, Küster CJ, Von Elert E: Molecular mechanisms of tolerance to cyanobacterial protease inhibitors revealed by clonal differences in Daphnia magna. Mol Ecol 2012, 21(19):4898-4911. doi:10.1111/j.1365-294X.2012.05753.x
  • [15]Lürling M: Effects of microcystin-free and microcystin-containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environ Toxicol 2003, 18:202-210.
  • [16]Threlkeld ST: Midsummer dynamics of 2 Daphnia species in Wintergreen Lake, Michigan. Ecology 1979, 60:165-179.
  • [17]Ghadouani A, Pinel-Alloul B, Prepas EE: Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwat Biol 2003, 48:363-381.
  • [18]Hansson LA, Gustafsson S, Rengefors K, Bomark L: Cyanoabacterial chemical warfare affects zooplankton community composition. Freshwat Biol 2007, 52:1290-1301.
  • [19]Sarnelle O: Initial conditions mediate the interaction between Daphnia and bloom-forming cyanobacteria. Limnol Oceanogr 2007, 52:2120-2127.
  • [20]Hairston NG, Holtmeier CL, Lampert W, Weider LJ, Post DM, Fischer JM, Caceres CE, Fox JA, Gaedke U: Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity? Evolution 2001, 55:2203-2214.
  • [21]Gustafsson S, Hansson LA: Development of tolerance against toxic cyanobacteria in Daphnia. Aquat Ecol 2004, 38:37-44.
  • [22]Smith VH, Schindler DE: Eutrophication science: where do we go from here? Trends Ecol Evol 2009, 24:201-207.
  • [23]Agrawal MK, Bagchi D, Bagchi SN: Acute inhibition of protease and suppression of growth in zooplankter, Moina macrocopa, by Microcystis blooms collected in Central India. Hydrobiologia 2001, 464:37-44.
  • [24]Schwarzenberger A, D’Hondt S, Vyverman W, Von Elert E (Eds): In Seasonal Succession of Cyanobacterial Protease Inhibitors and Daphnia magna Genotypes in A Eutrophic Swedish Lake. 2013. in press
  • [25]Von Elert E, Zitt A, Schwarzenberger A: Inducible tolerance in Daphnia magna to dietary protease inhibitors. J Exp Biol 2012, 215:2051-2059.
  • [26]DeMott WR, Dhawale S: Inhibition of in-vitro protein phosphatase-activity in three zooplankton species by microcystin-lr, a toxin from cyanobacteria. Arch Hydrobiol 1995, 134:417-424.
  • [27]Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg CEW: Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxification. Biochim Biophys Acta 1998, 1425:527-533.
  • [28]Amado LL, Monserrat JM: Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 2010, 36:226-235.
  • [29]Gustafsson S: Zooplankton Response to Cyanotoxins. Lund University; 2007. [Ph.D. thesis]
  • [30]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003., 4doi:10.1186/1471-2105-4-41
  • [31]Sturm A, Cunningham P, Dean M: The ABC transporter gene family of Daphnia pulex. BMC Genomics 2009, 10:170. BioMed Central Full Text
  • [32]Sturm A, George SS, Dean M, Cunningham P, Treuner-Freeman A: ABC transporters in the Daphnia pulex genome: implications for ecotoxicology and drug resistance in crustacean parasites. Comp Biochem Physiol Mol Integr Physiol 2009, 153A:S109.
  • [33]Takacova M, Imrichova D, Cernicka J, Gbelska Y, Subik J: KNQ1, a Kluyveromyces lactis gene encoding a drug efflux permease. Curr Genet 2004, 45:1-8.
  • [34]Mouches C, Pasteur N, Berge JB, Hyrien O, Raymond M, Desaintvincent BR, Desilvestri M, Georghiou GP: Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 1986, 233:778-780.
  • [35]Scoville AG, Pfrender ME: Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci U S A 2010, 107:4260-4263.
  • [36]Schwarzenberger A, Von Elert E: Cyanobacterial protease inhibitors lead to maternal transfer of increased protease gene expression in Daphnia. Oecologia 2013, 172:11-20.
  • [37]Brown E, Pilkington J, Nussey D, Watt K, Hayward A, Tucker R, Graham A, Paterson S, Beraldi D, Pemberton J, Slate J: Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Mol Ecol 2013, 22:757-773.
  • [38]Von Elert E, Jüttner F: Phosphorus limitation not light controls the exudation of allelopathic compounds by Trichormus doliolum. Limnol Oceanogr 1997, 42:1796-1802.
  • [39]Dittmann E, Neilan BA, Erhard M, Von Doehren H, Börner T: Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 1997, 26:779-787.
  • [40]Agrawal MK, Zitt A, Bagchi D, Weckesser J, Bagchi SN, Von Elert E: Characterization of proteases in guts of Daphnia magna and their inhibition by Microcystis aeruginosa PCC 7806. Environ Toxicol 2005, 20:314-322.
  • [41]Martin C, Oberer L, Ino T, Koenig WA, Busch M, Weckesser J: Cyanopeptolins, new depsipeptides from the cyanobacterium Microcystis sp. PCC 7806. J Antibiot 1993, 46:1550-1556.
  • [42]Wacker A, Von Elert E: Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 2001, 82:2507-2520.
  • [43]Threlkeld ST (E): Estimating cladoceran birth rates: the importance of egg mortality and the egg age distribution. Limnol Oceanogr 1979, 24:601-612.
  • [44]Colbourne JK: wFleaBase: the Daphnia genome database. BMC Bioinformatics 2005, 6:45. BioMed Central Full Text
  • [45]Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI JJ, Natale DA: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004, 5:R7. BioMed Central Full Text
  • [46]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucl Acids Res 2008, 36:D480-D484.
  • [47]Martin-Creuzburg D, Von Elert E, Hoffmann KH: Nutritional constraints at the cyanobacteria-Daphnia magna interface: the role of sterols. Limnol Oceanogr 2008, 53:456-468.
  • [48]Schwarzenberger A, Courts C, Von Elert E: Target gene approaches: gene expression in Daphnia magna exposed to predator-borne kairomones or to microcystin-producing and microcystin-free Microcystis aeruginosa. BMC Genomics 2009, 10:527. BioMed Central Full Text
  • [49]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [50]Heckmann LH, Connon R, Hutchinson TH, Maund SJ, Sibly RM, Callaghan A: Expression of target and reference genes in Daphnia magna exposed to ibuprofen. BMC Genomics 2006, 7:175-182. BioMed Central Full Text
  文献评价指标  
  下载次数:19次 浏览次数:12次