期刊论文详细信息
BMC Clinical Pharmacology
Decreased cervical epithelial sensitivity to nonoxynol-9 (N-9) after four daily applications in a murine model of topical vaginal microbicide safety
Fred C Krebs2  Tina Kish-Catalone2  Brian Wigdahl2  Robert Ownbey1  Karissa Lozenski2 
[1] Department of Pathology & Laboratory Medicine, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA;Department of Microbiology and Immunology, and Center for Molecular Therapeutics and Resistance, Center for Sexually Transmitted Disease, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
关键词: Toxicity;    Mouse;    Cervix;    N-9;    Microbicide;   
Others  :  860735
DOI  :  10.1186/2050-6511-13-9
 received in 2012-03-29, accepted in 2012-09-13,  发布年份 2012
PDF
【 摘 要 】

Background

The disappointing clinical failures of five topical vaginal microbicides have provided new insights into factors that impact microbicide safety and efficacy. Specifically, the greater risk for human immunodeficiency virus type 1 (HIV-1) acquisition associated with multiple uses of a nonoxynol-9 (N-9)-containing product has highlighted the importance of application frequency as a variable during pre-clinical microbicide development, particularly in animal model studies.

Methods

To evaluate an association between application frequency and N-9 toxicity, experiments were performed using a mouse model of cervicovaginal microbicide safety. In this model system, changes in cervical and vaginal epithelial integrity, cytokine release, and immune cell infiltration were assessed after single and multiple exposures to N-9.

Results

After the initial application of N-9 (aqueous, 1%), considerable damage to the cervical epithelium (but not the vaginal epithelium) was observed as early as 10 min post-exposure and up to 8 h post-exposure. Subsequent daily exposures (up to 4 days) were characterized by diminished cervical toxicity relative to single exposures of like duration. Levels of pro-inflammatory cytokines released into the cervicovaginal lumen and the degree of CD14-positive immune cell infiltration proximal to the cervical epithelium were also dependent on the number of N-9 exposures.

Conclusions

Rather than causing cumulative cervical epithelial damage, repeated applications of N-9 were characterized by decreased sensitivity to N-9-associated toxicity and lower levels of immune cell recruitment. These results provide new insights into the failure of N-9-based microbicides and illustrate the importance of considering multiple exposure protocols in pre-clinical microbicide development strategies.

【 授权许可】

   
2012 Lozenski et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724194656833.pdf 1764KB PDF download
259KB Image download
72KB Image download
305KB Image download
335KB Image download
322KB Image download
322KB Image download
200KB Image download
【 图 表 】

【 参考文献 】
  • [1]Global Report: UNAIDS report on the global AIDS epidemic 2010 http://www.unaids.org/globalreport/Global_report.htm webcite
  • [2]Ramjee G: Microbicide research: current and future directions. Curr Opin HIV AIDS 2010, 5(4):316-321.
  • [3]Nuttall J: Microbicides in the prevention of HIV infection: current status and future directions. Drugs 2010, 70(10):1231-1243.
  • [4]Minces LR, McGowan I: Advances in the Development of Microbicides for the Prevention of HIV Infection. Curr Infect Dis Rep 2010, 12(1):56-62.
  • [5]Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H, Sirivongrangson P, Mukenge-Tshibaka L, Ettiegne-Traore V, Uaheowitchai C, et al.: Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 2002, 360(9338):971-977.
  • [6]Peterson L, Nanda K, Opoku BK, Ampofo WK, Owusu-Amoako M, Boakye AY, Rountree W, Troxler A, Dominik R, Roddy R, et al.: SAVVY (C31G) gel for prevention of HIV infection in women: a Phase 3, double-blind, randomized, placebo-controlled trial in Ghana. PLoS One 2007, 2(12):e1312.
  • [7]Pirrone V, Wigdahl B, Krebs FC: The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Res 2011, 90(3):168-182.
  • [8]Veazey RS: Microbicide safety/efficacy studies in animals: macaques and small animal models. Curr Opin HIV AIDS 2008, 3(5):567-573.
  • [9]Hillier SL, Moench T, Shattock R, Black R, Reichelderfer P, Veronese F: In vitro and in vivo: the story of nonoxynol 9. J Acquir Immune Defic Syndr 2005, 39(1):1-8.
  • [10]Benes S, McCormack WM: Inhibition of growth of Chlamydia trachomatis by nonoxynol-9 in vitro. Antimicrob Agents Chemother 1985, 27(5):724-726.
  • [11]Kelly JP, Reynolds RB, Stagno S, Louv WC, Alexander WJ: In vitro activity of the spermicide nonoxynol-9 against Chlamydia trachomatis. Antimicrob Agents Chemother 1985, 27(5):760-762.
  • [12]Asculai SS, Weis MT, Rancourt MW, Kupferberg AB: Inactivation of herpes simplex viruses by nonionic surfactants. Antimicrob Agents Chemother 1978, 13(4):686-690.
  • [13]Jennings R, Clegg A: The inhibitory effect of spermicidal agents on replication of HSV-2 and HIV-1 in-vitro. J Antimicrob Chemother 1993, 32(1):71-82.
  • [14]Malkovsky M, Newell A, Dalgleish AG: Inactivation of HIV by nonoxynol-9. Lancet 1988, 1(8586):645.
  • [15]Krebs FC, Miller SR, Malamud D, Howett MK, Wigdahl B: Inactivation of human immunodeficiency virus type 1 by nonoxynol-9, C31G, or an alkyl sulfate, sodium dodecyl sulfate. Antiviral Res 1999, 43(3):157-173.
  • [16]Polsky B, Baron PA, Gold JW, Smith JL, Jensen RH, Armstrong D: In vitro inactivation of HIV-1 by contraceptive sponge containing nonoxynol-9. Lancet 1988, 1(8600):1456.
  • [17]Singh B, Cutler JC, Utidjian HM: Studies on development of a vaginal preparation providing both prophylaxis against venereal disease, other genital infections and contraception. 3. In vitro effect of vaginal contraceptive and selected vaginal preparations of Candida albicans and Trichomonas vaginalis. Contraception 1972, 5(5):401-411.
  • [18]Cook RL, Rosenberg MJ: Do spermicides containing nonoxynol-9 prevent sexually transmitted infections? A meta-analysis. Sex Transm Dis 1998, 25(3):144-150.
  • [19]Catalone BJ, Kish-Catalone TM, Budgeon LR, Neely EB, Ferguson M, Krebs FC, Howett MK, Labib M, Rando R, Wigdahl B: Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob Agents Chemother 2004, 48(5):1837-1847.
  • [20]Roddy RE, Cordero M, Cordero C, Fortney JA: A dosing study of nonoxynol-9 and genital irritation. Int J STD AIDS 1993, 4(3):165-170.
  • [21]Chvapil M, Droegemueller W, Owen JA, Eskelson CD, Betts K: tudies of nonoxynol-9. I. The effect on the vaginas of rabbits and rats. Fertil Steril 1980, 33(4):445-450.
  • [22]Kaminsky M, Szivos MM, Brown KR, Willigan DA: Comparison of the sensitivity of the vaginal mucous membranes of the albino rabbit and laboratory rat to nonoxynol-9. Food Chem Toxicol 1985, 23(7):705-708.
  • [23]Catalone BJ, Ferguson ML, Miller SR, Malamud D, Kish-Catalone T, Thakkar NJ, Krebs FC, Howett MK, Wigdahl B: Prolonged exposure to the candidate microbicide C31G differentially reduces cellular sensitivity to agent re-exposure. Biomed Pharmacother 2005, 59(8):460-468.
  • [24]Catalone BJ, Miller SR, Ferguson ML, Malamud D, Kish-Catalone T, Thakkar NJ, Krebs FC, Howett MK, Wigdahl B: Toxicity, inflammation, and anti-human immunodeficiency virus type 1 activity following exposure to chemical moieties of C31G. Biomed Pharmacother 2005, 59(8):430-437.
  • [25]Catalone BJ, Kish-Catalone TM, Neely EB, Budgeon LR, Ferguson ML, Stiller C, Miller SR, Malamud D, Krebs FC, Howett MK, et al.: Comparative safety evaluation of the candidate vaginal microbicide C31G. Antimicrob Agents Chemother 2005, 49(4):1509-1520.
  • [26]Roddy RE, Cordero M, Ryan KA, Figueroa J: A randomized controlled trial comparing nonoxynol-9 lubricated condoms with silicone lubricated condoms for prophylaxis. Sex Transm Infect 1998, 74(2):116-119.
  • [27]Fichorova RN, Bajpai M, Chandra N, Hsiu JG, Spangler M, Ratnam V, Doncel GF: Interleukin (IL)-1, IL-6, and IL-8 predict mucosal toxicity of vaginal microbicidal contraceptives. Biol Reprod 2004, 71(3):761-769.
  • [28]Fichorova RN, Tucker LD, Anderson DJ: The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis 2001, 184(4):418-428.
  • [29]Noguchi K, Tsukumi K, Urano T: Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits, and dogs. Comparative medicine 2003, 53(4):404-412.
  • [30]Costin GE, Raabe HA, Priston R, Evans E, Curren RD: Vaginal irritation models: the current status of available alternative and in vitro tests. Alternatives to laboratory animals: ATLA 2011, 39(4):317-337.
  • [31]Eckstein P, Jackson MC, Millman N, Sobrero AJ: Comparison of vaginal tolerance tests of spermicidal preparations in rabbits and monkeys. Journal of reproduction and fertility 1969, 20(1):85-93.
  • [32]Castle PE, Hoen TE, Whaley KJ, Cone RA: Contraceptive testing of vaginal agents in rabbits. Contraception 1998, 58(1):51-60.
  • [33]Pal S, Fielder TJ, Peterson EM, de la Maza LM: Analysis of the immune response in mice following intrauterine infection with the Chlamydia trachomatis mouse pneumonitis biovar. Infect Immun 1993, 61(2):772-776.
  • [34]Cox F: Prevention of group B streptococcal colonization with topically applied lipoteichoic acid in a maternal-newborn mouse model. Pediatr Res 1982, 16(10):816-819.
  • [35]Bourne N, Stegall R, Montano R, Meador M, Stanberry LR, Milligan GN: Efficacy and toxicity of zinc salts as candidate topical microbicides against vaginal herpes simplex virus type 2 infection. Antimicrob Agents Chemother 2005, 49(3):1181-1183.
  • [36]Milligan GN, Bernstein DI: Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 1997, 229(1):259-268.
  • [37]Milligan GN, Chu CF, Young CG, Stanberry LR: Effect of candidate vaginally-applied microbicide compounds on recognition of antigen by CD4+ and CD8+ T lymphocytes. Biol Reprod 2004, 71(5):1638-1645.
  • [38]Lozenski K, Kish-Catalone T, Pirrone V, Rando RF, Labib M, Wigdahl B, Krebs FC: Cervicovaginal safety of the formulated, biguanide-based human immunodeficiency virus type 1 (HIV-1) inhibitor NB325 in a murine model. Journal of biomedicine & biotechnology 2011, 2011:941061.
  • [39]Haase AT: Targeting early infection to prevent HIV-1 mucosal transmission. Nature 2010, 464(7286):217-223.
  • [40]Li Q, Estes JD, Schlievert PM, Duan L, Brosnahan AJ, Southern PJ, Reilly CS, Peterson ML, Schultz-Darken N, Brunner KG, et al.: Glycerol monolaurate prevents mucosal SIV transmission. Nature 2009, 458(7241):1034-1038.
  • [41]Pudney J, Quayle AJ, Anderson DJ: Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol Reprod 2005, 73(6):1253-1263.
  • [42]Cone RA, Hoen T, Wong X, Abusuwwa R, Anderson DJ, Moench TR: Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission. BMC Infect Dis 2006, 6:90. BioMed Central Full Text
  • [43]Grimm MC, Pavli P, Van de Pol E, Doe WF: Evidence for a CD14+ population of monocytes in inflammatory bowel disease mucosa–implications for pathogenesis. Clin Exp Immunol 1995, 100(2):291-297.
  • [44]Clahsen T, Schaper F: Interleukin-6 acts in the fashion of a classical chemokine on monocytic cells by inducing integrin activation, cell adhesion, actin polymerization, chemotaxis, and transmigration. J Leukoc Biol 2008, 84(6):1521-1529.
  文献评价指标  
  下载次数:32次 浏览次数:6次