期刊论文详细信息
BMC Evolutionary Biology
Evolution of major histocompatibility complex class I and class II genes in the brown bear
Jacek Radwan4  Jon E Swenson6  Pierre Taberlet5  Jonas Kindberg3  Ewa B Śliwińska1  Katarzyna Bojarska4  Wiesław Babik2  Katarzyna Kuduk4 
[1] Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland;Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków, 31-016, Poland;Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE, 901 83, Sweden;Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland;Laboratoire d’Ecologie Alpine (LECA), Génomique des Populations et Biodiversité, CNRS UMR 5553, Université Joseph Fourier, BP 53, Grenoble Cedex 9, F-38041, France;Norwegian Institute for Nature Research, Trondheim, NO-7485, Norway
关键词: Ursidae;    Orthology;    Phylogenetic analysis;    MHC gene expression;    Antigen binding sites;    Positive selection;   
Others  :  1140229
DOI  :  10.1186/1471-2148-12-197
 received in 2012-05-02, accepted in 2012-09-18,  发布年份 2012
PDF
【 摘 要 】

Background

Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae.

Results

We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca.

Conclusions

Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

【 授权许可】

   
2012 Kuduk et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324153734485.pdf 622KB PDF download
Figure 4. 49KB Image download
Figure 3. 152KB Image download
Figure 2. 62KB Image download
Figure 1. 151KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Klein J: The natural history of the major histocompatibility complex. New York: Wiley and Sons; 1986.
  • [2]Nei M, Gu X, Sitnikova T: Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 1997, 94(15):7799-7806.
  • [3]Nei M, Hughes AL: Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. Oxford, UK: Oxford University Press; 1992:27-38. [Proceedings of the 11th histocompatibility workshop and conferrence]
  • [4]Janeway C: Immunobiology: The immune system in health and disease. London: Current Biology Publications; 2004.
  • [5]Brown J, Jardetzky T, Saper M, Samraoui B, Bjorkman P, Wiley D: A hypothetical model of the foreign antigen-binding site of class-II histocompatibility molecules. Nature 1988, 332(6167):845-850.
  • [6]Reche PA, Reinherz EL: Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 2003, 331(3):623-641.
  • [7]Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC: 3-Dimensional structure of the human class-II histocompatibility antigen HLA-DR1. Nature 1993, 364(6432):33-39.
  • [8]Snell GD: The H-2 locus of the mouse: observations and speculations concerning its comparative genetics and its polymorphism. Folia Biologica (Praha) 1968, 14(5):335-358.
  • [9]Borghans JAM, Beltman JB, De Boer RJ: MHC polymorphism under host-pathogen coevolution. Immunogenetics 2004, 55(11):732-739.
  • [10]Doherty PC, Zinkernagel RM: Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 1975, 256(5512):50-52.
  • [11]Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R, Fugate M, Theiler J, Hsu YS, et al.: Advantage of rare HLA supertype in HIV disease progression. Nat Med 2003, 9(7):928-935.
  • [12]Penn D, Damjanovich K, Potts W: MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 2002, 99(17):11260-11264.
  • [13]Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM: Common West African HLA antigens are associated with protection from severe malaria. Nature 1991, 352(6336):595-600.
  • [14]Kloch A, Babik W, Bajer A, Sinski E, Radwan J: Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 2010, 19:255-265.
  • [15]Thursz MR, Thomas HC, Greenwood BM, Hill AVS: Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nat Genet 1997, 17(1):11-12.
  • [16]Carrington M: Recombination within the human MHC. Immunol Rev 1999, 167:245-256.
  • [17]Kaufman J, Wallny HJ: Chicken MHC molecules, disease resistance and the evolutionary origin of birds. Immunology and Developmental Biology of the Chicken 1996, 212:129-141.
  • [18]Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T: Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc R Soc Lond B Biol Sci 2001, 268(1466):479-485.
  • [19]Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G: Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 2006, 60(2):383-389.
  • [20]Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, Milinski M: MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol 2009, 18(15):3316-3329.
  • [21]Froeschke G, Sommer S: MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol Biol Evol 2005, 22(5):1254-1259.
  • [22]Loiseau C, Zoorob R, Robert A, Chastel O, Julliard R, Sorci G: Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proceedings of the Royal Society B-Biological Sciences 2011, 278(1709):1264-1272.
  • [23]Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L: Control of mating preferences in mice by genes in Major Histocompatibility Complex. J Exp Med 1976, 144(5):1324-1335.
  • [24]Radwan J, Tkacz A, Kloch A: MHC and preferences for male odour in the bank vole. Ethology 2008, 114(9):827-833.
  • [25]Wedekind C, Seebeck T, Bettens F, Paepke AJ: MHC-dependent mate preferences in humans. Proc R Soc Lond B Biol Sci 1995, 260(1359):245-249.
  • [26]Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H: Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B Biol Sci 2003, 270:S254-S256.
  • [27]Hedrick PW: Female choice and variation in the major histocompatibility complex. Genetics 1992, 132(2):575-581.
  • [28]Klein J: Origin of major histocompatibility complex polymorphism - the transspecies hypothesis. Hum Immunol 1987, 19(3):155-162.
  • [29]Hughes AL, Nei M: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988, 335(6186):167-170.
  • [30]Bernatchez L, Landry C: MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 2003, 16(3):363-377.
  • [31]Hughes AL, Nei M: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 1989, 86(3):958-962.
  • [32]Garrigan D, Hedrick PW: Perspective: Detecting adaptive molecular polymorphism, lessons from the MHC. Evolution 2003, 57:1707-1722.
  • [33]Klein J, Figueroa F: Evolution of the major histocompatibility complex. CRC Crit Rev Immunol 1986, 6(4):295-386.
  • [34]Takahashi K, Rooney A, Nei M: Origins and divergence times of mammalian class II MHC gene clusters. J Hered 2000, 91(3):198-204.
  • [35]Goda N, Mano T, Masuda R: Genetic diversity of the MHC class-II DQA gene in brown bears (ursus arctos) on hokkaido, northern japan. Zoolog Sci 2009, 26(8):530-535.
  • [36]Goda N, Mano T, Kosintsev P, Vorobiev A, Masuda R: Allelic diversity of the MHC class II DRB genes in brown bears (Ursus arctos) and a comparison of DRB sequences within the family Ursidae. Tissue Antigens 2010, 76(5):404-410.
  • [37]Bjärvall A, Sandegren F: Early experiences with the first radio-marked brown bears in Sweden. Int. Conf. Bear Res. Manage. 1987, 7:9-12.
  • [38]Waits L, Taberlet P, Swenson J, Sandegren F, Franzen R: Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 2000, 9(4):421-431.
  • [39]Bellemain E, Swenson J, Tallmon O, Brunberg S, Taberlet P: Estimating population size of elusive animals with DNA from hunter-collected feces: Four methods for brown bears. Conserv Biol 2005, 19(1):150-161.
  • [40]Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan J: 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher. BMC Evol Biol 2010, 10:395. BioMed Central Full Text
  • [41]Babik W, Pabijan M, Radwan J: Contrasting patterns of variation in MHC loci in the alpine newt. Mol Ecol 2008, 17(10):2339-2355.
  • [42]Stuglik M, Radwan J, Babik W: jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Resour 2011, 11(4):739-742.
  • [43]Hall TA: Bioedit: an user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposia Series 1999, 41:95-98.
  • [44]Lenz TL, Becker S: Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci - Implications for evolutionary analysis. Gene 2008, 427(1–2):117-123.
  • [45]Babik W, Taberlet P, Ejsmond MJ, Radwan J: New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Resour 2009, 9(3):713-719.
  • [46]Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF: A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 2010, 11:296. BioMed Central Full Text
  • [47]Babik W: Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour 2010, 10(2):237-251.
  • [48]Radwan J, Zagalska-Neubauer M, Cichoń M, Sendecka J, Kulma K, Gustafsson L, Babik W: MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol 2012, 21(10):2469-2479.
  • [49]Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI: Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 1990, 31(4):217-219.
  • [50]Excoffier L, Lischer H: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [51]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3(5):418-426.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [53]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [54]Posada D, Buckley TR: Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 2004, 53(5):793-808.
  • [55]Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 2005, 22(12):2472-2479.
  • [56]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [57]Shum B, Rajalingam R, Magor K, Azumi K, Carr W, Dixon B, Stet R, Adkison M, Hedrick R, Parham P: A divergent non-classical class I gene conserved in salmonids. Immunogenetics 1999, 49(6):479-490.
  • [58]Pan H, Wan Q, Fang S: Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics 2008, 60(3–4):185-193.
  • [59]Taberlet P, Swenson J, Sandegren F, Bjarvall A: Localization of a contact zone between 2 highly divergent mitochondrial-DNA lineages of the brown bear Ursus arctos in Scandinavia. Conserv Biol 1995, 9(5):1255-1261.
  • [60]Manel S, Bellemain E, Swenson J, Francois O: Assumed and inferred spatial structure of populations: the Scandinavian brown bears revisited. Mol Ecol 2004, 13(5):1327-1331.
  • [61]Chen Y, Zhang Y, Zhang H, Ge Y, Wan Q, Fang S: Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. J Exp Zool B Mol Dev Evol 2010, 314B(3):208-223.
  • [62]Richman AD, Herrera LG, Nash D: MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculatus): implications for models of balancing selection. Mol Ecol 2001, 10(12):2765-2773.
  • [63]Furlong RF, Yang Z: Diversifying and purifying selection in the peptide binding region of DRB in mammals. J Mol Evol 2008, 66(4):384-394.
  • [64]Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne R: High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 2004, 101(10):3490-3494.
  • [65]Ejsmond MJ, Radwan J: MHC diversity in bottlenecked populations: a simulation model. Conserv Genet 2011, 12(1):129-137.
  文献评价指标  
  下载次数:59次 浏览次数:6次