期刊论文详细信息
BMC Microbiology
Identification of conserved motifs in the Westnile virus envelope essential for particle secretion
Anjali Joshi2  Sebastian Maurer-Stroh4  Ng Oon Tek1  Raphael TC Lee3  Himanshu Garg2 
[1] Department of Infectious Disease, Tan Tock Seng Hospital, Singapore, Singapore;Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr, MSB-1 Annex, El Paso, TX 79905, USA;Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore;School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
关键词: Tsg101;    Alix;    Late domains;    Virus assembly;    HIV;    WNV;    Flavivirus;   
Others  :  1143171
DOI  :  10.1186/1471-2180-13-197
 received in 2013-05-09, accepted in 2013-08-27,  发布年份 2013
PDF
【 摘 要 】

Background

Enveloped viruses utilize cellular membranes to bud from infected cells. The process of virion assembly and budding is often facilitated by the presence of certain conserved motifs within viral proteins in conjunction with cellular factors. We hence examined the West Nile Virus (WNV) Envelope protein for the presence of any such motifs and their functional characterization.

Results

We identified conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope glycoprotein bearing resemblance to retroviral late domains. Disruptive mutations of PXAP to LAAL and of the highly conserved Cys350 in the YCYL motif, led to a severe reduction in WNV particle production. Similar motifs in case of retroviruses are known to interact with components of host sorting machinery like PXAP with Tsg101 and YXXL with Alix. However, in the case of WNV, siRNA mediated depletion of Alix or Tsg101 did not have an effect on WNV release. Molecular modeling suggested that while the 461PXAP464 motif is surface accessible and could potentially interact with cellular proteins required for WNV assembly, the 349YCYL352 motif was found to be internal with Cys350 important for protein folding via disulphide bonding.

Conclusions

The conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope are indispensable for WNV particle production. Although these motifs bear sequence similarity to retroviral late domains and are essential for WNV assembly, they are functionally distinct suggesting that they are not the typical late domain like motifs of retroviruses and may play a role other than Alix/Tsg101 utilization/dependence.

【 授权许可】

   
2013 Garg et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329011842190.pdf 2533KB PDF download
Figure 6. 135KB Image download
Figure 5. 87KB Image download
Figure 4. 89KB Image download
Figure 3. 69KB Image download
Figure 2. 62KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Brinton MA: The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 2002, 56:371-402.
  • [2]Lindenbach BD, Thiel HJ, Rice CM: Flaviviridae: the viruses and their replication. Philadelphia, PA: Fields virology Lippincott William & Wilkins; 2007:1101-1152.
  • [3]Calvert AE, Huang CY, Blair CD, Roehrig JT: Mutations in the West Nile prM protein affect VLP and virion secretion in vitro. Virology 2012, 433:35-44.
  • [4]Setoh YX, Prow NA, Hobson-Peters J, Lobigs M, Young PR, Khromykh AA, Hall RA: Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. J Gen Virol 2012, 93:1965-1975.
  • [5]Li J, Bhuvanakantham R, Howe J, Ng ML: Identifying the region influencing the cis-mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones. Biochem Biophys Res Commun 2005, 334:714-720.
  • [6]Mackenzie JM, Westaway EG: Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 2001, 75:10787-10799.
  • [7]Mason PW: Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 1989, 169:354-364.
  • [8]Nowak T, Farber PM, Wengler G: Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 1989, 169:365-376.
  • [9]Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, et al.: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 2001, 107:55-65.
  • [10]Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA: Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 1991, 88:3195-3199.
  • [11]Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD: Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA 2003, 100:12414-12419.
  • [12]Strack B, Calistri A, Craig S, Popova E, Gottlinger HG: AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003, 114:689-699.
  • [13]Xiang Y, Cameron CE, Wills JW, Leis J: Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J Virol 1996, 70:5695-5700.
  • [14]Freed EO: Viral late domains. J Virol 2002, 76:4679-4687.
  • [15]Craven RC, Harty RN, Paragas J, Palese P, Wills JW: Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 1999, 73:3359-3365.
  • [16]Harty RN, Paragas J, Sudol M, Palese P: A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 1999, 73:2921-2929.
  • [17]Jayakar HR, Murti KG, Whitt MA: Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 2000, 74:9818-9827.
  • [18]Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP: A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci USA 2000, 97:13871-13876.
  • [19]Kolesnikova L, Bamberg S, Berghofer B, Becker S: The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 2004, 78:2382-2393.
  • [20]Licata JM, Simpson-Holley M, Wright NT, Han Z, Paragas J, Harty RN: Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 2003, 77:1812-1819.
  • [21]Martin-Serrano J, Zang T, Bieniasz PD: HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 2001, 7:1313-1319.
  • [22]Urata S, Noda T, Kawaoka Y, Morikawa S, Yokosawa H, Yasuda J: Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 2007, 81:4895-4899.
  • [23]Perez M, Craven RC, de la Torre JC: The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 2003, 100:12978-12983.
  • [24]Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J: Cellular factors required for Lassa virus budding. J Virol 2006, 80:4191-4195.
  • [25]Ciancanelli MJ, Basler CF: Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 2006, 80:12070-12078.
  • [26]Sakaguchi T, Kato A, Sugahara F, Shimazu Y, Inoue M, Kiyotani K, Nagai Y, Yoshida T: AIP1/Alix is a binding partner of Sendai virus C protein and facilitates virus budding. J Virol 2005, 79:8933-8941.
  • [27]Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Gottlinger H, Campadelli-Fiume G, Palu G, Parolin C: Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 2007, 81:11468-11478.
  • [28]Chua HH, Lee HH, Chang SS, Lu CC, Yeh TH, Hsu TY, Cheng TH, Cheng JT, Chen MR, Tsai CH: Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 2007, 81:2459-2471.
  • [29]Crump CM, Yates C, Minson T: Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 2007, 81:7380-7387.
  • [30]Honeychurch KM, Yang G, Jordan R, Hruby DE: The vaccinia virus F13L YPPL motif is required for efficient release of extracellular enveloped virus. J Virol 2007, 81:7310-7315.
  • [31]Kian Chua P, Lin MH, Shih C: Potent inhibition of human Hepatitis B virus replication by a host factor Vps4. Virology 2006, 354:1-6.
  • [32]Lambert C, Doring T, Prange R: Hepatitis B virus maturation is sensitive to functional inhibition of ESCRT-III, Vps4, and gamma 2-adaptin. J Virol 2007, 81:9050-9060.
  • [33]Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P: Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci USA 2007, 104:10205-10210.
  • [34]Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, Wang JJ: Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol 2003, 84:2795-2805.
  • [35]Carpp LN, Galler R, Bonaldo MC: Interaction between the yellow fever virus nonstructural protein NS3 and the host protein Alix contributes to the release of infectious particles. Microbes Infect 2011, 13:85-95.
  • [36]Bieniasz PD: Late budding domains and host proteins in enveloped virus release. Virology 2006, 344:55-63.
  • [37]Demirov DG, Freed EO: Retrovirus budding. Virus Res 2004, 106:87-102.
  • [38]Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW: N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 2005, 79:13262-13274.
  • [39]Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, Altenberg B, Budd A, Diella F, Dinkel H, Gibson TJ: Attributes of short linear motifs. Molecular bioSystems 2012, 8:268-281.
  • [40]Ren S, Yang G, He Y, Wang Y, Li Y, Chen Z: The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains. BMC genomics 2008, 9:452. BioMed Central Full Text
  • [41]Pornillos O, Higginson DS, Stray KM, Fisher RD, Garrus JE, Payne M, He GP, Wang HE, Morham SG, Sundquist WI: HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J Cell Biol 2003, 162:425-434.
  • [42]Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, et al.: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012, 40:D13-D25.
  • [43]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [44]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
  • [45]Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL: Domain enhanced lookup time accelerated BLAST. Biol Direct 2012, 7:12. BioMed Central Full Text
  • [46]Pierson TC, Sanchez MD, Puffer BA, Ahmed AA, Geiss BJ, Valentine LE, Altamura LA, Diamond MS, Doms RW: A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 2006, 346:53-65.
  • [47]Joshi A, Garg H, Ablan S, Freed EO, Nagashima K, Manjunath N, Shankar P: Targeting the HIV entry, assembly and release pathways for anti-HIV gene therapy. Virology 2011, 415:95-106.
  • [48]Demirov DG, Ono A, Orenstein JM, Freed EO: Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci USA 2002, 99:955-960.
  • [49]Goila-Gaur R, Demirov DG, Orenstein JM, Ono A, Freed EO: Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J Virol 2003, 77:6507-6519.
  • [50]Bishop N, Woodman P: TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J Biol Chem 2001, 276:11735-11742.
  • [51]Joshi A, Munshi U, Ablan SD, Nagashima K, Freed EO: Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 2008, 9:1972-1983.
  • [52]Shehu-Xhilaga M, Ablan S, Demirov DG, Chen C, Montelaro RC, Freed EO: Late domain-dependent inhibition of equine infectious anemia virus budding. J Virol 2004, 78:724-732.
  • [53]Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH: Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 2007, 14:194-199.
  • [54]Munshi UM, Kim J, Nagashima K, Hurley JH, Freed EO: An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J Biol Chem 2007, 282:3847-3855.
  • [55]Schlundt A, Sticht J, Piotukh K, Kosslick D, Jahnke N, Keller S, Schuemann M, Krause E, Freund C: Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions. Mol Cell Proteomics 2009, 8:2474-2486.
  • [56]Demirov DG, Orenstein JM, Freed EO: The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 2002, 76:105-117.
  • [57]Krieger E, Koraimann G, Vriend G: Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins 2002, 47:393-402.
  • [58]Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH: Crystal structure of the West Nile virus envelope glycoprotein. J Virol 2006, 80:11467-11474.
  • [59]Kaufmann B, Vogt MR, Goudsmit J, Holdaway HA, Aksyuk AA, Chipman PR, Kuhn RJ, Diamond MS, Rossmann MG: Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc Natl Acad Sci USA 2010, 107:18950-18955.
  • [60]Pawliczek T, Crump CM: Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. J Virol 2009, 83:11254-11264.
  • [61]Irie T, Harty RN: L-domain flanking sequences are important for host interactions and efficient budding of vesicular stomatitis virus recombinants. J Virol 2005, 79:12617-12622.
  • [62]Irie T, Licata JM, Jayakar HR, Whitt MA, Bell P, Harty RN: Functional analysis of late-budding domain activity associated with the PSAP motif within the vesicular stomatitis virus M protein. J Virol 2004, 78:7823-7827.
  • [63]Dowlatshahi DP, Sandrin V, Vivona S, Shaler TA, Kaiser SE, Melandri F, Sundquist WI, Kopito RR: ALIX is a Lys63-specific polyubiquitin binding protein that functions in retrovirus budding. Dev Cell 2012, 23:1247-1254.
  • [64]Keren-Kaplan T, Attali I, Estrin M, Kuo LS, Farkash E, Jerabek-Willemsen M, Blutraich N, Artzi S, Peri A, Freed EO, et al.: Structure-based in silico identification of ubiquitin-binding domains provides insights into the ALIX-V:ubiquitin complex and retrovirus budding. The EMBO journal 2013, 32:538-551.
  • [65]Ko A, Lee EW, Yeh JY, Yang MR, Oh W, Moon JS, Song J: MKRN1 induces degradation of West Nile virus capsid protein by functioning as an E3 ligase. J Virol 2010, 84:426-436.
  • [66]Martin-Serrano J: The role of ubiquitin in retroviral egress. Traffic 2007, 8:1297-1303.
  • [67]Ng ML, Howe J, Sreenivasan V, Mulders JJ: Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 1994, 137:303-313.
  • [68]Seligman SJ, Bucher DJ: The importance of being outer: consequences of the distinction between the outer and inner surfaces of flavivirus glycoprotein E. Trends Microbiol 2003, 11:108-110.
  • [69]Danecek P, Lu W, Schein CH: PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype. Journal of molecular biology 2010, 396:550-563.
  • [70]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
  • [71]Patnaik A, Chau V, Li F, Montelaro RC, Wills JW: Budding of equine infectious anemia virus is insensitive to proteasome inhibitors. J Virol 2002, 76:2641-2647.
  • [72]Freed EO, Orenstein JM, Buckler-White AJ, Martin MA: Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol 1994, 68:5311-5320.
  文献评价指标  
  下载次数:67次 浏览次数:18次