期刊论文详细信息
Retrovirology
The S40 residue in HIV-1 Gag p6 impacts local and distal budding determinants, revealing additional late domain activities
Carol A Carter2  Harold Burger6  Kathryn Anastos4  Michael Powell7  Chaoping Chen1  Binshan Shi5  Barbara Weiser6  Kimdar Sherefa Kemal3  Lorna Ehrlich2  Mahfuz Khan7  Min-Huei Chen2  Susan M Watanabe2 
[1] Colorado State University, Fort Collins, CO 80523, USA;Department of Molecular Genetics & Microbiology, Stony Brook University, Life Sciences Bldg. Rm 248, Stony Brook, NY 11794-5222, USA;Current address: Albert Einstein College of Medicine, Bronx, NY 10461, USA;Albert Einstein College of Medicine, Bronx, NY 10461, USA;Current address: Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA;Current address: University of California Davis School of Medicine and Sacramento VA Medical Center, Sacramento, CA 95817, USA;Department of Microbiology & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
关键词: Viral budding;    Protease;    Viral particle maturation;    CA NTD;    Nedd4;    Tsg101;    Alix;    HIV-1;   
Others  :  806085
DOI  :  10.1186/1742-4690-10-143
 received in 2013-05-10, accepted in 2013-11-11,  发布年份 2013
PDF
【 摘 要 】

Background

HIV-1 budding is directed primarily by two motifs in Gag p6 designated as late domain-1 and −2 that recruit ESCRT machinery by binding Tsg101 and Alix, respectively, and by poorly characterized determinants in the capsid (CA) domain. Here, we report that a conserved Gag p6 residue, S40, impacts budding mediated by all of these determinants.

Results

Whereas budding normally results in formation of single spherical particles ~100 nm in diameter and containing a characteristic electron-dense conical core, the substitution of Phe for S40, a change that does not alter the amino acids encoded in the overlapping pol reading frame, resulted in defective CA-SP1 cleavage, formation of strings of tethered particles or filopodia-like membrane protrusions containing Gag, and diminished infectious particle formation. The S40F-mediated release defects were exacerbated when the viral-encoded protease (PR) was inactivated or when L domain-1 function was disrupted or when budding was almost completely obliterated by the disruption of both L domain-1 and −2. S40F mutation also resulted in stronger Gag-Alix interaction, as detected by yeast 2-hybrid assay. Reducing Alix binding by mutational disruption of contact residues restored single particle release, implicating the perturbed Gag-Alix interaction in the aberrant budding events. Interestingly, introduction of S40F partially rescued the negative effects on budding of CA NTD mutations EE75,76AA and P99A, which both prevent membrane curvature and therefore block budding at an early stage.

Conclusions

The results indicate that the S40 residue is a novel determinant of HIV-1 egress that is most likely involved in regulation of a critical assembly event required for budding in the Tsg101-, Alix-, Nedd4- and CA N-terminal domain affected pathways.

【 授权许可】

   
2013 Watanabe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708090037653.pdf 2065KB PDF download
Figure 8. 90KB Image download
Figure 7. 71KB Image download
Figure 6. 63KB Image download
Figure 5. 83KB Image download
Figure 4. 60KB Image download
Figure 3. 63KB Image download
Figure 2. 145KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Gottlinger HG: The HIV-1 assembly machinery. AIDS 2001, 15(Suppl 5):S13-20.
  • [2]Lalonde MS, Sundquist WI: How HIV finds the door. Proc Natl Acad Sci USA 2012, 109:18631-18632.
  • [3]Votteler J, Sundquist WI: Virus Budding and the ESCRT Pathway. Cell Host Microbe 2013, 14:232-241.
  • [4]Meng B, Lever AM: Wrapping up the bad news: HIV assembly and release. Retrovirology 2013, 10:5. BioMed Central Full Text
  • [5]Garrus JE, Von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell Dev Biol 2001, 107:55-65.
  • [6]Martin Serrano J, Zang T, Bieniasz PD: HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Medicine 2001, 7:1313-1319.
  • [7]VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA: Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc Natl Acad Sci USA 2001, 98:7724-7729.
  • [8]Weiss ER, Gottlinger H: The role of cellular factors in promoting HIV budding. J Mol Biol 2011, 410:525-533.
  • [9]Martin-Serrano J, Neil SJ: Host factors involved in retroviral budding and release. Nat Rev Microbiol 2011, 9:519-531.
  • [10]Hurley JH, Hanson PI: Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol 2010, 11:556-566.
  • [11]Strack B, Calistri A, Craig S, Popova E, Gottlinger HG: AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 2003, 114:689-699.
  • [12]Vincent O, Rainbow L, Tilburn J, Arst HN Jr, Penalva MA: YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol 2003, 23:1647-1655.
  • [13]von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, et al.: The protein network of HIV budding. Cell 2003, 114:701-713.
  • [14]Dussupt V, Sette P, Bello NF, Javid MP, Nagashima K, Bouamr F: Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol 2011, 85:2304-2315.
  • [15]Sette P, Jadwin J, Dussupt V, Bello N, Bouamr F: The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol 2010, 84:12.
  • [16]Chung HY, Morita E, von Schwedler U, Muller B, Krausslich HG, Sundquist WI: NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 2008, 82:4884-4897.
  • [17]Usami Y, Popov S, Popova E, Gottlinger HG: Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J Virol 2008, 82:4898-4907.
  • [18]Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD: HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 2005, 168:89-101.
  • [19]Gottwein E, Bodem J, Muller B, Schmechel A, Zentgraf H, Krausslich HG: The Mason-Pfizer monkey virus PPPY and PSAP motifs both contribute to virus release. J Virol 2003, 77:9474-9485.
  • [20]Bouamr F, Melillo JA, Wang MQ, Nagashima K, De Los Santos M, Rein A, Goff SP: PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101 [corrected]. J Virol 2003, 77:11882-11895.
  • [21]Schubert U, Ott DE, Chertova EN, Welker R, Tessmer U, Princiotta MF, Bennink JR, Krausslich HG, Yewdell JW: Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci USA 2000, 97:13057-13062.
  • [22]Strack B, Calistri A, Accola M, Palu G, Gottlinger H: A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci USA 2000, 97:13063-13068.
  • [23]Patnaik A, Chau V, Wills J: Ubiquitin is part of the retrovirus budding machinery. Proc Natl Acad Sci USA 2000, 97:13069-13074.
  • [24]Vana ML, Tang Y, Chen A, Medina G, Carter C, Leis J: Role of Nedd4 and ubiquitination of Rous sarcoma virus Gag in budding of virus-like particles from cells. J Virol 2004, 78:13943-13953.
  • [25]Joshi A, Munshi U, Ablan SD, Nagashima K, Freed EO: Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 2008, 9:1972-1983.
  • [26]Sette P, Nagashima K, Piper RC, Bouamr F: Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 2013, 10:79. BioMed Central Full Text
  • [27]Medina G, Pincetic A, Ehrlich LS, Zhang Y, Tang Y, Leis J, Carter CA: Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting. Virology 2008, 377:30-38.
  • [28]Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP: Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 2007, 128:841-852.
  • [29]Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH: Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 2007, 14:194-199.
  • [30]Zhai Q, Fisher RD, Chung HY, Myszka DG, Sundquist WI, Hill CP: Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat Struct Mol Biol 2008, 15:43-49.
  • [31]Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP: Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1. J Virol 2011, 85:632-637.
  • [32]Votteler J, Neumann L, Hahn S, Hahn F, Rauch P, Schmidt K, Studtrucker N, Solbak SM, Fossen T, Henklein P, et al.: Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly. Retrovirology 2011, 8:11. BioMed Central Full Text
  • [33]Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, Swanstrom R: The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 1994, 68:8017-8027.
  • [34]Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Krausslich HG: Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 1998, 72:2846-2854.
  • [35]Mateu MG: The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly. FEBS J 2009, 276:6098-6109.
  • [36]Briggs JA, Krausslich HG: The molecular architecture of HIV. J Mol Biol 2011, 410:491-500.
  • [37]Ganser-Pornillos BK, Yeager M, Pornillos O: Assembly and architecture of HIV. Adv Exp Med Biol 2012, 726:441-465.
  • [38]He J, Landau N: Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor. J Virol 1995, 69:4587-4592.
  • [39]Kimpton J, Emerman M: Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992, 66:2232-2239.
  • [40]Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG: Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 2012, 8:e1002762.
  • [41]Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD: Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci USA 2003, 100:12414-12419.
  • [42]Chen C, Vincent O, Jin J, Weisz OA, Montelaro RC: Functions of early (AP-2) and late (AIP1/ALIX) endocytic proteins in equine infectious anemia virus budding. J Biol Chem 2005, 280:40474-40480.
  • [43]Lazert C, Chazal N, Briant L, Gerlier D, Cortay JC: Refined study of the interaction between HIV-1 p6 late domain and ALIX. Retrovirology 2008, 5:39. BioMed Central Full Text
  • [44]Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature 1989, 340:245-246.
  • [45]Hogue IB, Grover JR, Soheilian F, Nagashima K, Ono A: Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 2011, 85:9749-9766.
  • [46]Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A: Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 2013, 87:4650-4664.
  • [47]Ren X, Hurley JH: Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation. Traffic 2011, 12:1282-1290.
  • [48]Hurley JH, Odorizzi G: Get on the exosome bus with ALIX. Nat Cell Biol 2012, 14:654-655.
  • [49]Agromayor M, Martin-Serrano J: Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 2013, 23:433-441.
  • [50]McCullough J, Fisher RD, Whitby FG, Sundquist WI, Hill CP: ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci USA 2008, 105:7687-7691.
  • [51]Pan S, Wang R, Zhou X, He G, Koomen J, Kobayashi R, Sun L, Corvera J, Gallick GE, Kuang J: Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly. J Biol Chem 2006, 281:34640-34650.
  • [52]Boguslavsky S, Grosheva I, Landau E, Shtutman M, Cohen M, Arnold K, Feinstein E, Geiger B, Bershadsky A: p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin. Proc Natl Acad Sci U S A 2007, 104:10882-10887.
  • [53]Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM: Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol 2005, 15:1276-1285.
  • [54]Lai FP, Szczodrak M, Oelkers JM, Ladwein M, Acconcia F, Benesch S, Auinger S, Faix J, Small JV, Polo S, et al.: Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases. Mol Biol Cell 2009, 20:3209-3223.
  • [55]Bongiovanni A, Romancino DP, Campos Y, Paterniti G, Qiu X, Moshiach S, Di Felice V, Vergani N, Ustek D, D'Azzo A: Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle. J Biol Chem 2013, 287:12159-12171.
  • [56]Romancino DP, Anello L, Morici G, D'Azzo A, Bongiovanni A, Di Bernardo M: Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus. Dev Growth Differ 2013, 55:19.
  • [57]Medina G, Zhang Y, Tang Y, Gottwein E, Vana ML, Bouamr F, Leis J, Carter CA: The functionally exchangeable L domains in RSV and HIV-1 Gag direct particle release through pathways linked by Tsg101. Traffic 2005, 6:880-894.
  • [58]Okumura F, Yoshida K, Liang F, Hatakeyama S: MDA-9/syntenin interacts with ubiquitin via a novel ubiquitin-binding motif. Mol Cell Biochem 2013, 352:163-172.
  • [59]Rajesh S, Bago R, Odintsova E, Muratov G, Baldwin G, Sridhar P, Overduin M, Berditchevski F: Binding to syntenin-1 protein defines a new mode of ubiquitin-based interactions regulated by phosphorylation. J Biol Chem 2011, 286:39606-39614.
  • [60]Solbak SM, Reksten TR, Hahn F, Wray V, Henklein P, Halskau O, Schubert U, Fossen T: HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. Biochim Biophys Acta 1828, 2013:816-823.
  • [61]Jin J, Sturgeon T, Chen C, Watkins SC, Weisz OA, Montelaro RC: Distinct intracellular trafficking of equine infectious anemia virus and human immunodeficiency virus type 1 Gag during viral assembly and budding revealed by bimolecular fluorescence complementation assays. J Virol 2007, 81:11226-11235.
  • [62]He J, Landau NR: Use of a novel human immunodeficiency virus type 1 reporter virus expressing human placental alkaline phosphatase to detect an alternative viral receptor. J Virol 1995, 69:4587-4592.
  • [63]Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA: Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature 1986, 322:470-474.
  • [64]Hermida-Matsumoto L, Resh MD: Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 2000, 74:8670-8679.
  • [65]Ehrlich LS, Krausslich H-G, Wimmer E, Carter C: Expression in Escherichia coli and purification of human immunodeficiency virus type 1 capsid protein (p24). AIDS Res Hum Retroviruses 1990, 6:1169-1175.
  • [66]Khan M, Garcia-Barrio M, Powell MD: Restoration of wild-type infectivity to human immunodeficiency virus type 1 strains lacking nef by intravirion reverse transcription. J Virol 2001, 75:12081-12087.
  • [67]Ehrlich LS, Medina GN, Khan MB, Powell MD, Mikoshiba K, Carter CA: Activation of the inositol (1,4,5)-triphosphate calcium gate receptor is required for HIV-1 Gag release. J Virol 2010, 84:6438-6451.
  文献评价指标  
  下载次数:1次 浏览次数:3次