期刊论文详细信息
BMC Genetics
Empirical evaluation of humpback whale telomere length estimates; quality control and factors causing variability in the singleplex and multiplex qPCR methods
Per J Palsbøll1  Jooke Robbins2  Martine Bérubé1  Morten Tange Olsen3 
[1]Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen, PO Box 11103, 97 CC, Groningen, The Netherlands
[2]Provincetown Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA, 02657, USA
[3]Section for Evolutionary Genomics, Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen Øster Voldgade 5-7, Copenhagen K 1350, Denmark
关键词: Guidelines;    Non-model species;    Quality control;    Telomere length;    Quantitative PCR;   
Others  :  1121366
DOI  :  10.1186/1471-2156-13-77
 received in 2011-12-25, accepted in 2012-08-03,  发布年份 2012
PDF
【 摘 要 】

Background

Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay.

Results

Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays.

Conclusion

Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments.

【 授权许可】

   
2012 Olsen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150212013246686.pdf 458KB PDF download
Figure 5. 105KB Image download
Figure 4. 51KB Image download
Fig. 3. 77KB Image download
Figure 2. 60KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Fig. 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Blackburn EH: Structure and function of telomeres. Nature 1991, 350(6319):569-573.
  • [2]Meyne J, Ratliff RL, Moyzis RK: Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proceedings of the National Academy of Sciences of the United States of America 1989, 86(18):7049-7053.
  • [3]Watson JD: Origin of concatemeric T7 DNA. Nature-New Biology 972, 94:197.
  • [4]von Zglinicki T: Oxidative stress shortens telomeres. Trends BiochemSci 2002, 27(7):339-344.
  • [5]Aviv A: Telomeres, sex, reactive oxygen species, and human cardiovascular aging. Journal of Molecular Medicine 2002, 80(11):689-695.
  • [6]Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB: Telomere length predicts replicative capacity of human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 1992, 89(21):10114-10118.
  • [7]Hayflick L: Living forever and dying in the attempt. Experimental Gerontology 2003, 38(11–12):1231-1241.
  • [8]Coviello-McLaughlin GM, Prowse KR: Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res 1997, 25(15):3051-3058.
  • [9]Lee WW, Nam KH, Terao K, Yoshikawa Y: Age-related telomere length dynamics in peripheral blood mononuclear cells of healthy cynomolgus monkeys measured by Flow FISH. Immunology 2002, 105(4):458-465.
  • [10]Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev 2008, 88(2):557-579.
  • [11]Chiang YJ, Calado RT, Hathcock KS, Lansdorp PM, Young NS, Hodes RJ: Telomere length is inherited with resetting of the telomere set-point. Proceedings of the National Academy of Sciences 2010, 107(22):10148-10153.
  • [12]Vleck CM, Haussmann MF, Vleck D: The natural history of telomeres: tools for aging animals and exploring the aging process. Experimental Gerontology 2003, 38(7):791-795.
  • [13]Haussmann MF, Winkler DW, O'Reilly KM, Huntington CE, Nisbet ICT, Vleck CM: Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc R Soc Lond Ser B-Biol Sci 2003, 270(1522):1387-1392.
  • [14]Grabowski P, Hultdin M, Karlsson K, Tobin G, Aleskog A, Thunberg U, Laurell A, Sundstrom C, Rosenquist R, Roos G: Telomere length as a prognostic parameter in chronic lymphocytic leukemia with special reference to VH gene mutation status. Blood 2005, 105(12):4807-4812.
  • [15]Pauliny A, Wagner RH, Augustin J, Szep T, Blomqvist D: Age-independent telomere length predicts fitness in two bird Species. Molecular Ecology 2006, 15(6):1681-1687.
  • [16]Njajou OT, Cawthon RM, Damcott CM, Wu S-H, Ott S, Garant MJ, Blackburn EH, Mitchell BD, Shuldiner AR, Hsueh W-C: Telomere length is paternally inherited and is associated with parental lifespan. Proceedings of the National Academy of Sciences 2007, 104(29):12135-12139.
  • [17]Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P: Telomere dynamics rather than age predict life expectancy in the wild. Proceedings of the Royal Society B: Biological Sciences 2009, 276(1662):1679-1683.
  • [18]Salomons HM, Mulder GA, van de Zande L, Haussmann MF, Linskens MHK, Verhulst S: Telomere shortening and survival in free-living corvids. Proc R Soc B-Biol Sci 2009, 276(1670):3157-3165.
  • [19]Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang XM, Siegel G, Bergman A, Huffman DM, Schechter CB, et al.: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:1710-1717.
  • [20]Blasco MA: Telomeres and human disease: Ageing, cancer and beyond. Nature Reviews Genetics 2005, 6(8):611-622.
  • [21]Nakagawa S, Gemmell NJ, Burke T: Measuring vertebrate telomeres: applications and limitations. Molecular Ecology 2004, 13(9):2523-2533.
  • [22]Monaghan P, Haussmann MF: Do telomere dynamics link lifestyle and lifespan? Trends in Ecology & Evolution 2006, 21(1):47-53.
  • [23]Dunshea G, Duffield D, Gales N, Hindell M, Wells RS, Jarman SN: Telomeres as age markers in vertebrate molecular ecology. Mol Ecol Resour 2011, 11(2):225-235.
  • [24]Cawthon RM: Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 2009, 37(3):e21.
  • [25]Cawthon RM: Telomere measurement by quantitative PCR. Nucleic Acids Res 2002, 30(10):e47.
  • [26]Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FSB, Olsvik PA, Penning LC, Toegel S: MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 2010., 11(74)
  • [27]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al.: The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 2009, 55(4):611-622.
  • [28]Bustin SA: Why the need for qPCR publication guidelines?-The case for MIQE. Methods 2010, 50(4):217-226.
  • [29]Monaghan P: Crossing the great divide: telomeres and ecology. Heredity 2010, 105(6):574-575.
  • [30]Aviv A: The Epidemiology of Human Telomeres: Faults and Promises. J Gerontol Ser A-Biol Sci Med Sci 2008, 63(9):979-983.
  • [31]Aviv A: Commentary: Raising the bar on telomere epidemiology. Int J Epidemiol 2009, 38(6):1735-1736.
  • [32]Horn T, Robertson BC, Gemmell NJ: The use of telomere length in ecology and evolutionary biology. Heredity 2010, 105(6):497-506.
  • [33]Smith S, Turbill C, Penn DJ: Chasing telomeres, not red herrings, in evolutionary ecology. Heredity 2011, 107(4):372-373.
  • [34]Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N: Statistical significance of quantitative PCR. BMC Bioinformatics 2007., 8(131)
  • [35]Lambertsen RH: A biopsy system for large whales and its use for cytogenetics. Journal of Mammalogy 1987, 68(2):443-445.
  • [36]Palsbøll PJ, Larsen F, Hansen EH: Sampling of skin biopsies from free-ranging large cetaceans in West Greenland: Development of new biopsy tips and bolt designs. Report to the International Whaling Commission 1991, 13:71-79.
  • [37]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: a laboratory manual. 2nd edition. New York: Cold Spring Harbour Laboratory Press; 1989.
  • [38]Bérubé M, Aguilar A: A new hybrid between a blue whale, Balaenoptera musculus, and a fin whale, B-physalus: Frequency and implications of hybridization. Marine Mammal Science 1998, 14(1):82-98.
  • [39]Jullien N: AmplifX version 1.5.4. 2008. Available from http://ifrjr.nord.univ-mrs.fr/AmplifX-Home-page webcite.
  • [40]Mullis KB, Faloona FA: Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Method Enzymol 1987, 155:335-350.
  • [41]Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 1977, 74(12):5463-5467.
  • [42]Ririe KM, Rasmussen RP, Wittwer CT: Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 1997, 245(2):154-160.
  • [43]Cawthon RM: Telomere measurement by quantitative PCR. Nucl Acids Res 2002, 30(10):e47.
  • [44]Tuomi JM, Voorbraak F, Jones DL, Ruijter JM: Bias in the C(q) value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 2010, 50(4):313-322.
  • [45]Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters 2003, 339:62-66.
  • [46]Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM: Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009., 37(6)
  • [47]Rutledge RG, Cote C: Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 2003, 31(16):e93.
  • [48]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.
  • [49]Burns MJ, Nixon GJ, Foy CA, Harris N: Standardisation of data from real-time quantitative PCR methods - evaluation of outliers and comparison of calibration curves. BMC Biotechnol 2005., 5(31)
  • [50]Grubbs FE: Procedures for detecting outlying observations in samples. Technometrics 1969, 11(1):1.
  • [51]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-DeltaDeltacT method. Methods 2001, 25:402-408.
  • [52]Callicott RJ, Womack JE: Real-time PCR assay for measurement of mouse telomeres. Comparative Medicine 2006, 56(1):17-22.
  • [53]Tichopad A, Dzidic A, Pfaffl MW: Improving quantitative real-time RT-PCR reproducibility by boosting primer-linked amplification efficiency. Biotech Lett 2002, 24:2053-2056.
  • [54]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 2002., 3(7)
  • [55]Liu W, Saint DA: A new quantitave method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 2002, 302:52-59.
  • [56]Guescini M, Sisti D, Rocchi MBL, Stocchi L, Stocchi V: A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplification inhibition. BMC Bioinformatics 2008., 9(326)
  • [57]Sisti D, Guescini M, Rocchi MBL, Tibollo P, D'Atri M, Stocchi V: Shape based kinetic outlier detection in real-time PCR. BMC Bioinformatics 2010., 11
  • [58]Nordgard O, Kvaloy JT, Farmen RK, Heikkila R: Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: The balance between accuracy and precision. Anal Biochem 2006, 356(2):182-193.
  • [59]Regier N, Frey B: Experimental comparison of relative RT-qPCR quantification approaches for gene expression studies in poplar. BMC Mol Biol 2010., 11(57)
  • [60]Haussmann MF, Mauck RA: New strategies for telomere-based age estimation. Mol Ecol Resour 2008, 8(2):264-274.
  • [61]Kimura M, Aviv A: Measurement of telomere DNA content by dot blot analysis. Nucleic Acids Res 2011, 39(12):e84.
  文献评价指标  
  下载次数:16次 浏览次数:3次