期刊论文详细信息
BMC Genetics
Computational cloning of drug target genes of a parasitic nematode, Oesophagostomum dentatum
Jeffrey K Beetham1  Richard J Martin2  Nathan M Romine1 
[1] Departments of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;Departments of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
关键词: Drug resistance;    Anthelminthic;    Nematode;    In silico sequence;    Transcriptome;   
Others  :  1086935
DOI  :  10.1186/1471-2156-14-55
 received in 2012-12-14, accepted in 2013-06-14,  发布年份 2013
PDF
【 摘 要 】

Background

Gene identification and sequence determination are critical requirements for many biological, genomic, and bioinformatic studies. With the advent of next generation sequencing (NGS) technologies, such determinations are predominantly accomplished in silico for organisms for which the genome is known or for which there exists substantial gene sequence information. Without detailed genomic/gene information, in silico sequence determination is not straightforward, and full coding sequence determination typically involves time- and labor-intensive PCR-based amplification and cloning methods.

Results

An improved method was developed with which to determine full length gene coding sequences in silico using de novo assembly of RNA-Seq data. The scheme improves upon initial contigs through contig-to-gene identification by BLAST nearest–neighbor comparison, and through single-contig refinement by iterative-binning and -assembly of reads. Application of the iterative method produced the gene identification and full coding sequence for 9 of 12 genes and improved the sequence of 3 of the 12 genes targeted by benzimidazole, macrocyclic lactone, and nicotinic agonist classes of anthelminthic drugs in the swine nodular parasite Oesophagostomum dentatum. The approach improved upon the initial optimized assembly with Velvet that only identified full coding sequences for 2 genes.

Conclusions

Our reiterative methodology represents a simplified pipeline with which to determine longer gene sequences in silico from next generation sequence data for any nematode for which detailed genetic/gene information is lacking. The method significantly improved upon an initial Velvet assembly of RNA-Seq data that yielded only 2 full length sequences. The identified coding sequences for the 11 target genes enables further future examinations including: (i) the use of recombinant target protein in functional assays seeking a better understanding of the mechanism of drug resistance, and (ii) seeking comparative genomic and transcriptomic assessments between parasite isolates that exhibit varied drug sensitivities.

【 授权许可】

   
2013 Romine et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116020949682.pdf 231KB PDF download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Brooker S: Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers–a review. Int J Parasitol 2010, 40(10):1137-1144.
  • [2]Martin RJ: Modes of action of anthelmintic drugs. Vet J 1997, 154(1):11-34.
  • [3]Robertson AP, Buxton SK, Puttachary S, Williamson SM, Wolstenholme AJ, Neveu C, Cabaret J, Charvet CL RJM: Antinematodal drugs- modes of action and resistance: and worms will not come to Thee. In Parasitic Helminths, Targets, Screens, Drugs and Vaccines. Edited by Caffrey ER. Weinheim, Germany: Wiley-Blackwell; 2012:233-249.
  • [4]Kaminsky R, Gauvry N, Schorderet Weber S, Skripsky T, Bouvier J, Wenger A, Schroeder F, Desaules Y, Hotz R, Goebel T, et al.: Identification of the amino-acetonitrile derivative monepantel (AAD 1566) as a new anthelmintic drug development candidate. Parasitol Res 2008, 103(4):931-939.
  • [5]Little PR, Hodges A, Watson TG, Seed JA, Maeder SJ: Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand. New Zeal Vet J 2010, 58(3):121-129.
  • [6]Geerts S, Gryseels B: Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000, 13(2):207-222.
  • [7]James CE, Hudson AL, Davey MW: Drug resistance mechanisms in helminths: is it survival of the fittest? Trends Parasitol 2009, 25(7):328-335.
  • [8]Martin RJ, Robertson AP: Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology 2007, 134(Pt 8):1093-1104.
  • [9]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [10]Martin JA, Wang Z: Next-generation transcriptome assembly. Nat Rev Genet 2011, 12(10):671-682.
  • [11]Polderman AM, Blotkamp J: Oesophagostomum infections in humans. Parasitol Today 1995, 11(12):451-456.
  • [12]Varady M, Bjorn H, Craven J, Nansen P: In vitro characterization of lines of Oesophagostomum dentatum selected or not selected for resistance to pyrantel, levamisole and ivermectin. Int J Parasitol 1997, 27(1):77-81.
  • [13]Leroy S, Duperray C, Morand S: Flow cytometry for parasite nematode genome size measurement. Mol Biochem Parasitol 2003, 128(1):91-93.
  • [14]Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA: De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 2010, 11:681. BioMed Central Full Text
  • [15]Tsai IJ, Otto TD, Berriman M: Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol 2010, 11(4):R41. BioMed Central Full Text
  • [16]Consortium CS: Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998, 282(5396):2012-2018.
  • [17]Boulin T, Fauvin A, Charvet CL, Cortet J, Cabaret J, Bessereau JL, Neveu C: Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance. Brit J Pharmacol 2011, 164(5):1421-1432.
  • [18]Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, et al.: A molecular evolutionary framework for the phylum Nematoda. Nature 1998, 392(6671):71-75.
  • [19]Towers PR, Edwards B, Richmond JE, Sattelle DB: The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 2005, 93(1):1-9.
  • [20]Robertson AP, Bjørn HE, Martin RJ: Resistance to levamisole resolved at the single-channel level. FASEB J 1999, 13(6):749-760.
  • [21]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [22]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [23]Needleman SB, Wunsch CD: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970, 48(3):443-453.
  文献评价指标  
  下载次数:17次 浏览次数:18次