期刊论文详细信息
Particle and Fibre Toxicology
Slaving and release in co-infection control
Archie CA Clements1  Juan Antonio Solon2  Kate Halton3  Darren J Gray4  Gail M Williams1  Laith Yakob1 
[1] Infectious Disease Epidemiology Unit, School of Population Health, University of Queensland, Herston, Brisbane, Qld 4006, Australia;College of Public Health, University of the Philippines Manila, 625 Pedro Gil Street, Ermita, Manila, Philippines;Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvingrove, Qld 4059, Australia;Molecular Parasitology Laboratory, Queensland Institute of Medial Research, Herston, Brisbane, Qld 4029, Australia
关键词: Drug resistance;    Next generation matrix;    Epidemiology;    Infectious disease;    Mathematical model;    Nematode;   
Others  :  1227025
DOI  :  10.1186/1756-3305-6-157
 received in 2013-03-01, accepted in 2013-05-23,  发布年份 2013
PDF
【 摘 要 】

Background

Animal and human infection with multiple parasite species is the norm rather than the exception, and empirical studies and animal models have provided evidence for a diverse range of interactions among parasites. We demonstrate how an optimal control strategy should be tailored to the pathogen community and tempered by species-level knowledge of drug sensitivity with use of a simple epidemiological model of gastro-intestinal nematodes.

Methods

We construct a fully mechanistic model of macroparasite co-infection and use it to explore a range of control scenarios involving chemotherapy as well as improvements to sanitation.

Results

Scenarios are presented whereby control not only releases a more resistant parasite from antagonistic interactions, but risks increasing co-infection rates, exacerbating the burden of disease. In contrast, synergisms between species result in their becoming epidemiologically slaved within hosts, presenting a novel opportunity for controlling drug resistant parasites by targeting co-circulating species.

Conclusions

Understanding the effects on control of multi-parasite species interactions, and vice versa, is of increasing urgency in the advent of integrated mass intervention programmes.

【 授权许可】

   
2013 Yakob et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150927082348573.pdf 742KB PDF download
Figure 4. 80KB Image download
Figure 3. 107KB Image download
Figure 2. 79KB Image download
Figure 1. 46KB Image download
Figure 4. 80KB Image download
Figure 3. 107KB Image download
Figure 2. 79KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Petney TN, Andrews RH: Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 1998, 28:377-393.
  • [2]Chan MS: The global burden of intestinal nematodes infections – fifty years on. Parasitol Today 1997, 13:438-443.
  • [3]Brooker S: Estimating the global distribution and disease burden of intestinal nematode infections: Adding up the numbers – A review. Int J Parasitol 2010, 40:1137-1144.
  • [4]Pullan RBS: The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors 2012, 5(1):81.
  • [5]Cox FEG: Concomitant infections, parasites and immune responses. Parasitology 2001, 122(Suppl):S23-S38.
  • [6]Graham AL: Ecological rules governing helminth–micro parasite co infection. Proc Natl Acad Sci 2008, 105:566-570.
  • [7]Pullan R, Brooker S: The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? Parasitology 2008, 135:783-794.
  • [8]Brooker S, Kabatereine NB, Fleming F, Devlin N: Cost and cost–effectiveness of nationwide school-based helminth control in Uganda: intra-country variation and effects of scaling-up. Health Policy Plan 2008, 23:24-35.
  • [9]Mathers CD, Ezzatti M, Lopez AD: Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 2007, 1:E114.
  • [10]Brooker S, Clements ACA: Spatial heterogeneity of parasite co-infection: determinants and geostatistical prediction at regional scales. Int J Parasitol 2009, 39:591-597.
  • [11]Clements ACA, Deville MA, Ndayishimiye O, Fenwick A: Spatial co-distribution of neglected tropical diseases in the East African Great Lakes Region: Revisiting the justification for integrated control. Trop Med Int Health 2010, 15:198-207.
  • [12]Utzinger J, De Savigny D: Control of neglected tropical diseases: integrated chemotherapy and beyond. PLoS Med 2006, 3:e112.
  • [13]Mwinzi PMS, Owaga C, Mwanje M, Muok E, Ayisi J, Laserson K, Muchiri E, Secor W, Karanja D: Integrated community-directed intervention for schistosomiasis and soil transmitted helminths in western Kenya - a pilot study. Parasit Vectors 2012, 5(1):182.
  • [14]Keiser J, Utzinger J: Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. J Am Med Assoc 2008, 299:1937-1948.
  • [15]Besier B: New anthelmintics for livestock: the time is right. Trends Parasitol 2007, 23:21-24.
  • [16]Waller PJ: Anthelmintic resistance. Vet Parasitol 1997, 72:391-412.
  • [17]Albonico M, Engels D, Savioli L: Monitoring drug efficacy and early detection of drug resistance in human soil-transmitted nematodes: a pressing public health agenda for helminth control. Int J Parasitol 2004, 34:1205-1210.
  • [18]Medley GF, Guyatt HL, Bundy DAP: A quantitative framework for evaluating the effect of community treatment on the morbidity due to ascariasis. Parasitology 1993, 106:201-221.
  • [19]Smith G: A mathematical model for the evolution of anthelmintic resistance in a direct life cycle nematode parasite. Int J Parasitol 1990, 20:913-921.
  • [20]Anderson RM, May RM: Helminth Infections of Humans: Mathematical Models, Population Dynamics, and Control. Adv Parasitol 1985, 24:1-101.
  • [21]Churcher TS, Filipe JAN, Basáñez M-G: Density dependence and the control of helminth parasites. J Anim Ecol 2006, 75:1313-1320.
  • [22]Behnke JM, Wahid FN, Grencis RK, Else KJ, Ben-Smith A, Goyal PK: Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): down regulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunol 1993, 15:415-421.
  • [23]Behnke JM: Structure in parasite component communities in wild rodents: predictability, stability, associations and interactions or pure randomness? Parasitology 2008, 135:751-766.
  • [24]Hermanek J, Goyal PK, Wakelin D: Lymphocyte, antibody and cytokine responses during concurrent infections between helminths that selectively promote T-helper-1 or T-helper-2 activity. Parasite Immunol 1994, 16:111-117.
  • [25]Christensen NO, Nansen P, Fagbemi BO, Monrad J: Heterologous antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental-infection of mammalian hosts. Parasitol Res 1987, 73:387-410.
  • [26]Fleming FM, Brooker S, Geiger SM, Caldas IR, Correa-Oliveira R, Hotez PJ, Bethony JM: Synergistic associations between hookworm and other helminth species in a rural community in Brazil. Trop Med Int Health 2006, 11:56-64.
  • [27]Webster M, Correa-Oliveira R, Gazzinelli G, Viana IRC, Fraga LADO, Silveira AMS, Dunne DW: Factors affecting high and low human IgE responses to schistosome worm antigens in an area of Brazil endemic for Schistosoma mansoni and hookworm. AmJTrop Med Hyg 1997, 57(4):487-494.
  • [28]Anderson RM, May RM: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J Anim Ecol 1978, 47:219-247.
  • [29]Dobson AP: The population-dynamics of competition between parasites. Parasitology 1985, 91:317-347.
  • [30]Roberts MG, Dobson AP: The population-dynamics of communities of parasitic helminths. Math Biosci 1995, 126:191-214.
  • [31]Gatto M, DeLeo GA: Interspecific competition among macro parasites in a density-dependent host population. J Math Biol 1998, 37:467-490.
  • [32]Pugliese A: Coexistence of macro parasites without direct interactions. Theor Popul Biol 2000, 57:145-165.
  • [33]Fenton A: Worms and germs: the population dynamic consequences of microparasite-macroparasite co-infection. Parasitology 2008, 135:1545-1560.
  • [34]Bottomley C, Isham VS, Basáñez M-G: Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitology 2005, 131:417-433.
  • [35]Fenton A, Viney ME, Lello J: Detecting interspecific macro parasite interactions from ecological data: patterns and process. Ecol Lett 2010, 13:606-615.
  • [36]Anderson RM, May RM: Infectious Diseases of Humans: Dynamics and Control. Oxford and New York: Oxford University Press; 1991:467-529.
  • [37]Hoagland KE, Schad GA: Necator americanus and Ancylostoma duodenale: Life history parameters and epidemiological implications of two sympatric hookworms of humans. Exp Parasitol 1978, 44:36-49.
  • [38]Udonsi JK, Atata G: Necator americanus: Temperature, pH, light, and larval development, longevity, and desiccation tolerance. Exp Parasitol 1987, 63(2):136-142.
  • [39]Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, et al.: Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc Natl Acad Sci 1997, 94:338-342.
  • [40]Hudson PJ, Dobson AP: Macroparasites: Observed Patterns. In Ecology of Infectious Diseases in Natural Populations. Edited by Grenfell BT, Dobson AP. Cambridge: Cambridge University Press; 1995:144-176.
  • [41]Keymer AE: Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 1982, 84:573-587.
  • [42]Chylinski C, Boag B, Stear MJ, Cattadori IM: Effects of host characteristics and parasite intensity on growth and fecundity of Trichostrongylus retortaeformis infections in rabbits. Parasitology 2009, 136(01):117-123.
  • [43]Paterson S, Viney ME: Host immune responses are necessary for density dependence in nematode infections. Parasitology 2002, 125:283-292.
  • [44]Grenfell BT, Wilson K, Isham VS, Boyd HEG, Dietz K: Modelling patterns of parasite aggregation in natural populations: trichostrongylid nematode-ruminant interactions as a case study. Parasitology 1995, 111(Suppl):S135-S151.
  • [45]Quinnell RJ, Keymer AE, Medley GF: The regulation of gastrointestinal helminth populations. Phil Trans Roy Soc B 1990, 330:191-201.
  • [46]Galvani AP: Immunity, antigenic heterogeneity, and aggregation of helminth parasites. J Parasitol 2003, 89:232-241.
  • [47]Dash KM: Interaction between Oesophagostomum columbianum and Oesophagostomum venulosum in sheep. Int J Parasitol 1981, 11:201-207.
  • [48]Holland C: Interactions between Moniliformis (Acanthocephala) and Nippostrongylus (Nematoda) in the small intestine of laboratory rats. Parasitology 1984, 88:303-315.
  • [49]Poulin R: Interactions between species and the structure of helminth communities. Parasitology 2001, 122:S3-S11.
  • [50]Howard SC, Donnelly CA, Chan MS: Methods for estimation of associations between multiple species parasite infections. Parasitology 2001, 122:233-251.
  • [51]Poulin R: Detection of interspecific competition in parasite communities. J Parasitol 2005, 91(5):1232-1235.
  • [52]Behnke JM, Ali NMH, Jenkins SN: Survival to patency of low-level infections with Trichuris muris in mice concurrently infected with Nematospiroides dubius. Annals Trop Med Hyg 1984, 78:509-517.
  • [53]Yoshida A, Maruyama H, Yabu Y, Amano T, Kobayakawa T, Ohta N: Immune responses against protozoal and nematodal infection in mice with underlying Schistosoma mansoni infection. Parasitol Int 1999, 48:73-79.
  • [54]Holmes JC: Effects of concurrent infections on Hymenolepis diminta (Cestoda) and Moniliformis dubius (Acanthocephala). II. Effects on growth. J Parasitol 1962, 48:87-96.
  • [55]Holmes JC: Effects of concurrent infections on Hymenolepis diminta (Cestoda) and Moniliformis dubius (Acanthocephala). II. Effects in hamsters. J Parasitol 1962, 48:97-100.
  • [56]Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P: Global trends in emerging infectious diseases. Nature 2008, 451:990-993.
  • [57]Basáñez M-G, French MD, Walker M, Churcher TS: Paradigm lost: how parasite control may alter pattern and process in human helminthiases. Trends Parasitol 2012, 28:161-171.
  文献评价指标  
  下载次数:37次 浏览次数:12次