期刊论文详细信息
BMC Developmental Biology
Amnion formation in the mouse embryo: the single amniochorionic fold model
AN Zwijsen1  Kirstie A Lawson2  Danny Huylebroeck1  Liz Graham2  Mariya P Dobreva1  Paulo NG Pereira1 
[1] Center for Human Genetics, K.U. Leuven, Leuven, Belgium;MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
关键词: gastrulation;    epiblast;    chorion;    bone morphogenetic proteins;    apoptosis;    anterior separation point;    amniotic membrane;    amniochorionic fold;    allantois;   
Others  :  1118624
DOI  :  10.1186/1471-213X-11-48
 received in 2011-04-28, accepted in 2011-08-01,  发布年份 2011
PDF
【 摘 要 】

Background

Despite the detailed knowledge obtained over the last decade on the molecular regulation of gastrulation in amniotes, the process of amnion development has been poorly described and illustrated in mice, and conflicting descriptions exist. Understanding the morphogenesis and development not only of the early mouse embryo, but also of its extraembryonic tissues, is crucial for correctly interpreting fate-mapping data and mouse mutants with gastrulation defects. Moreover, the recent isolation from amnion of cells with stem cell features further argues for a better understanding of the process of amnion formation. Here, we revisit the highly dynamic process of amnion formation in the mouse. Amnion development starts early during gastrulation and is intimately related to the formation of the exocoelom and the expansion of the amniotic fold. The authoritative description involves the fusion of two amniotic folds, a big posterior and a smaller anterior fold. We challenged this 'two amniotic folds' model by performing detailed histomorphological analyses of dissected, staged embryos and 3D reconstructions using historical sections.

Results

A posterior fold of extraembryonic ectoderm and associated epiblast is formed early during gastrulation by accumulation of extraembryonic mesoderm posterior to the primitive streak. Previously called the "posterior amniotic fold", we rename it the "amniochorionic fold" (ACF) because it forms both amnion and chorion. Exocoelom formation within the ACF seems not to involve apoptosis within the mesoderm. The ACF and exocoelom expand without disrupting the anterior junction of epiblast, extraembryonic ectoderm and visceral endoderm. No separate anterior fold is formed; its absence was confirmed in 3D reconstructions. Amnion and chorion closure is eccentric, close to the anterior margin of the egg cylinder: we name it the "anterior separation point".

Conclusions

Here, we reconcile previous descriptions of amnion formation and provide new nomenclature, as well as an animation, that clarify and emphasize the arrangement of the tissues that contribute to amnion development and the dynamics of the process. According to our data, the amnion and the chorion are formed by a single amniochorionic fold initiated posteriorly. Finally, we give an overview on mutant mouse models with impaired amnion development.

【 授权许可】

   
2011 Pereira et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150207021340132.pdf 7002KB PDF download
Figure 7. 152KB Image download
Figure 6. 132KB Image download
Figure 5. 183KB Image download
Figure 4. 128KB Image download
Figure 3. 121KB Image download
Figure 2. 151KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Schmidt W: The amniotic fluid compartment: the fetal habitat. Adv Anat Embryol Cell Biol 1992, 127:1-100.
  • [2]Gardner RL: The relationship between cell lineage and differentiation in the early mouse embryo. Results Probl Cell Differ 1978, 9:205-41.
  • [3]Kaufman MH: The Atlas of Mouse Development. London: Academic Press; 1992.
  • [4]George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO: Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993, 119:1079-91.
  • [5]Gersdorff N, Muller M, Otto S, Poschadel R, Hubner S, Miosge N: Basement membrane composition in the early mouse embryo day 7. Dev Dyn 2005, 233:1140-8.
  • [6]Suzuki N, Labosky PA, Furuta Y, Hargett L, Dunn R, Fogo AB, Takahara K, Peters DM, Greenspan DS, Hogan BL: Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid. Development 1996, 122:3587-95.
  • [7]Scott JN, Ream LJ, Pendergrass PB: Developmental changes in the mouse amnion: a SEM study. J Submicrosc Cytol 1982, 14:607-12.
  • [8]Tamarin A, Boyde A: Three-dimensional anatomy of the 8-day mouse concepts: a study by scanning electron microscopy. J Embryol Exp Morphol 1976, 36:575-96.
  • [9]Dobreva MP, Pereira PN, Deprest J, Zwijsen A: On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 2010, 54:761-77.
  • [10]Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I: Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 1981, 2:1003-5.
  • [11]Kubo M, Sonoda Y, Muramatsu R, Usui M: Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 2001, 42:1539-46.
  • [12]Toda A, Okabe M, Yoshida T, Nikaido T: The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 2007, 105:215-28.
  • [13]Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC: Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 2007, 75:91-6.
  • [14]Ilancheran S, Moodley Y, Manuelpillai U: Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 2009, 30:2-10.
  • [15]Marcus AJ, Woodbury D: Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008, 12:730-42.
  • [16]Miki T, Strom SC: Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2006, 2:133-42.
  • [17]Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC: Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 2008, 26:300-11.
  • [18]Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, Bonhomme D, Ezine S, Frydman R, Cavazzana-Calvo M, André-Schmutz I: Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 2009, 113:3953-60.
  • [19]Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB: Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 2008, 76:130-44.
  • [20]Bonnevie K: New facts on mesoderm formation and proamnion derivatives in the normal mouse embryo. Journal of Morphology 1950, 86:495-545.
  • [21]Snell GD, Stevens LC: Early Embryology. In Biology of the Laboratory Mouse. 2nd edition. MG-H NY; 1966:205-245.
  • [22]Beddington RS, Robertson EJ: Axis development and early asymmetry in mammals. Cell 1999, 96:195-209.
  • [23]Beddington RSP: Three-dimensional representation of gastrulation in the mouse. Ciba Foundation Symposium 1992, 165:55-60.
  • [24]Burdsal CA, Damsky CH, Pedersen RA: The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak. Development 1993, 118:829-44.
  • [25]Lawson KA, Meneses JJ, Pedersen RA: Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 1991, 113:891-911.
  • [26]Gardner RL, Rossant J: Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 1979, 52:141-52.
  • [27]Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP: The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 1999, 126:4691-701.
  • [28]Tam PP, Beddington RS: The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 1987, 99:109-26.
  • [29]Sobotta J: Die Entwicklung des Eies der Maus vom ersten Auftreten des Mesoderms an bis zen Ausbildung der Embryonalanlage und dem Auftreten der Allantois. Arch Mikroskop Anat 1911, 78:271-352.
  • [30]Theiler K: The House Mouse, Atlas of Embryonic Development. New York: Springer-Verlag; 1989.
  • [31]Bosman EA, Lawson KA, Debruyn J, Beek L, Francis A, Schoonjans L, Huylebroeck D, Zwijsen A: Smad5 determines murine amnion fate through the control of bone morphogenetic protein expression and signalling levels. Development 2006, 133:3399-409.
  • [32]Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A: Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 1999, 126:1631-42.
  • [33]Wang X, Bornslaeger EA, Haub O, Tomihara-Newberger C, Lonberg N, Dinulos MB, Disteche CM, Copeland N, Gilbert DJ, Jenkins NA, Lacy E: A candidate gene for the amnionless gastrulation stage mouse mutation encodes a TRAF-related protein. Dev Biol 1996, 177:274-90.
  • [34]Zhang H, Bradley A: Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996, 122:2977-86.
  • [35]Coucouvanis E, Martin GR: Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 1995, 83:279-87.
  • [36]Ciruna BG, Rossant J: Expression of the T-box gene Eomesodermin during early mouse development. Mech Dev 1999, 81:199-203.
  • [37]Downs KM: Systematic localization of Oct-3/4 to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Dev Dyn 2008, 237:464-75.
  • [38]Downs KM, Davies T: Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 1993, 118:1255-66.
  • [39]Snow MHL: Gastrulation in the mouse: Growth and regionalization of the epiblast. J Embryol Expl Morphol 1977, 42:293-303.
  • [40]Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M: The anterior-posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation. Curr Biol 2004, 14:184-96.
  • [41]Perea-Gomez A, Camus A, Moreau A, Grieve K, Moneron G, Dubois A, Cibert C, Collignon J: Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior-posterior axis. Curr Biol 2004, 14:197-207.
  • [42]Strilic B, Kucera T, Lammert E: Formation of cardiovascular tubes in invertebrates and vertebrates. Cell Mol Life Sci 2010, 67:3209-18.
  • [43]Zovein AC, Luque A, Turlo KA, Hofmann JJ, Yee KM, Becker MS, Fassler R, Mellman I, Lane TF, Iruela-Arispe ML: Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 2010, 18:39-51.
  • [44]Mahlapuu M, Ormestad M, Enerback S, Carlsson P: The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 2001, 128:155-66.
  • [45]Shibata M, Garcia-Garcia MJ: The mouse KRAB zinc-finger protein CHATO is required in embryonic-derived tissues to control yolk sac and placenta morphogenesis. Dev Biol 2011, 349:331-41.
  • [46]Inman KE, Downs KM: The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 2007, 45:237-58.
  • [47]Cross JC: How to make a placenta: mechanisms of trophoblast cell differentiation in mice--a review. Placenta 2005, 26(Suppl A):S3-9.
  • [48]Tanner SM, Aminoff M, Wright FA, Liyanarachchi S, Kuronen M, Saarinen A, Massika O, Mandel H, Broch H, de la Chapelle A: Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet 2003, 33:426-9.
  • [49]Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E: The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 2001, 27:412-6.
  • [50]Chang H, Matzuk MM: Smad5 is required for mouse primordial germ cell development. Mech Dev 2001, 104:61-7.
  • [51]Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP: Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 2007, 7:11. BioMed Central Full Text
  • [52]Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U: Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007, 77:577-88.
  • [53]Kobayashi M, Yakuwa T, Sasaki K, Sato K, Kikuchi A, Kamo I, Yokoyama Y, Sakuragawa N: Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant 2008, 17:291-301.
  • [54]Edinburgh Mouse Atlas Project: Staging Definitions [http:/ / www.emouseatlas.org/ emap/ ema/ theiler_stages/ StageDefinition/ stagecriteria.html] webcite
  • [55]Rosen B, Beddington RS: Whole-mount in situ hybridization in the mouse embryo: gene expression in three dimensions. Trends Genet 1993, 9:162-7.
  • [56]Edinburgh Mouse Atlas Project: Database Software [http:/ / www.emouseatlas.org/ emap/ ema/ protocols/ image_processing/ ip_method1.html] webcite
  • [57]Edinburgh Mouse Atlas Project: Software MAPaint [http:/ / www.emouseatlas.org/ emap/ analysis_tools_resources/ software/ eMAP-apps.html] webcite
  • [58]Donnai D, Winter RM: Disorganisation: a model for 'early amnion rupture'? J Med Genet 1989, 26:421-5.
  • [59]Robin NH, Abbadi N, McCandless SE, Nadeau JH: Disorganization in mice and humans and its relation to sporadic birth defects. Am J Med Genet 1997, 73:425-36.
  • [60]Hoyt PR, Bartholomew C, Davis AJ, Yutzey K, Gamer LW, Potter SS, Ihle JN, Mucenski ML: The Evi1 proto-oncogene is required at midgestation for neural, heart, and paraxial mesenchyme development. Mech Dev 1997, 65:55-70.
  • [61]Mukhopadhyay M, Teufel A, Yamashita T, Agulnick AD, Chen L, Downs KM, Schindler A, Grinberg A, Huang SP, Dorward D, Westphal H: Functional ablation of the mouse Ldb1 gene results in severe patterning defects during gastrulation. Development 2003, 130:495-505.
  • [62]Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM: The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002, 22:901-15.
  • [63]Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J: A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997, 89:981-90.
  • [64]Tam PP, Behringer RR: Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 1997, 68:3-25.
  文献评价指标  
  下载次数:122次 浏览次数:13次